このドキュメントの新しいバージョンが利用できます。お客様は次のことを行ってください。 こちらをクリック 最新バージョンに移行する。
1. F タイルの概要
2. F タイルのアーキテクチャー
3. F-Tile PMA/FEC Direct PHY Intel® FPGA IP の実装
4. F-Tile Reference and System PLL Clocks Intel® FPGA IP の実装
5. F タイル PMA/FEC Direct PHY デザインの実装
6. サポートされるツール
7. F タイル・トランシーバー・リンクのデバッグ
8. F タイルのアーキテクチャーと PMA および FEC Direct PHY IP のユーザーガイド・アーカイブ
9. F タイルのアーキテクチャーと PMA および FEC Direct PHY IP のユーザーガイド改訂履歴
A. 付録
2.2.2.1. 400G ハード IP と FHT を使用している 1 つの 200GbE-4 インターフェイスの実装
2.2.2.2. 400G ハード IP と FHT を使用している 1 つの 200GbE-2 インターフェイスの実装
2.2.2.3. 400G ハード IP と FHT を使用している 1 つの 100GbE-1 インターフェイスの実装
2.2.2.4. 400G ハード IP と FGT を使用している 1 つの 100GbE-4 インターフェイスの実装
2.2.2.5. 200G ハード IP と FGT を使用している 1 つの 10GbE-1 インターフェイスの実装
2.2.2.6. 400G ハード IP と FHT を使用している 3 つの 25GbE-1 インターフェイスの実装
2.2.2.7. 400G ハード IP と FHT を使用している 1 つの 50GbE-1 インターフェイスと 2 つの 25GbE-1 インターフェイスの実装
2.2.2.8. 400G ハード IP と FHT を使用している 1 つの 100GbE-1 インターフェイスと 2 つの 25GbE-1 インターフェイスの実装
2.2.2.9. 400G ハード IP と FHT を使用している 2 つの 100GbE-1 インターフェイスと 1 つの 25GbE-1 インターフェイスの実装
2.2.2.10. 400G ハード IP と FHT を使用している 100GbE-1、100GbE-2、および 50GbE-1 インターフェイスの実装
3.1. F-Tile PMA/FEC Direct PHY Intel® FPGA IP の概要
3.2. F-Tile PMA/FEC Direct PHY Intel® FPGA IP を使用するデザイン
3.3. IP のコンフィグレーション
3.4. 信号とポートのリファレンス
3.5. PMA および FEC モードにおける PHY TX および RX データパスのビットマッピング
3.6. クロック
3.7. カスタム拍生成ポートとロジック
3.8. リセットのアサート
3.9. ボンディングの実装
3.10. 独立したポートのコンフィグレーション
3.11. コンフィグレーション・レジスター
3.12. コンフィグレーション可能な インテル® Quartus® Prime 開発ソフトウェアの設定
3.13. ハードウェア・テストに向けた F-Tile PMA/FEC Direct PHY Intel® FPGA IP のコンフィグレーション
3.14. Avalon® メモリーマップド・インターフェイスを使用してのハードウェア・コンフィグレーション
3.4.1. TX および RX のパラレルおよびシリアル・インターフェイス信号
3.4.2. TX および RX のリファレンス・クロックとクロック出力インターフェイス信号
3.4.3. リセット信号
3.4.4. RS-FEC の信号
3.4.5. カスタム拍のコントロールおよびステータス信号
3.4.6. TX PMA のコントロール信号
3.4.7. RX PMA のステータス信号
3.4.8. TX/RX の PMA およびコア・インターフェイス FIFO の信号
3.4.9. PMA Avalon® メモリーマップド・インターフェイスの信号
3.4.10. データパス Avalon® メモリーマップド・インターフェイスの信号
5.1. F タイル PMA/FEC Direct PHY デザインの実装
5.2. F-Tile PMA/FEC Direct PHY Intel® FPGA IP のインスタンス化
5.3. F-Tile PMA/FEC Direct PHY Intel® FPGA IP での RS-FEC Direct デザインの実装
5.4. F-Tile Reference and System PLL Clocks Intel® FPGA IP のインスタンス化
5.5. カスタム拍生成ポートとロジックのイネーブル
5.6. F タイル PMA/FEC Direct PHY デザインの IP の接続
5.7. F タイル PMA/FEC Direct PHY デザインのシミュレーション
5.8. F タイル・インターフェイスのプランニング
5.2.2. TX データパスオプションの設定
F-Tile PMA/FEC Direct PHY Intel® FPGA IP パラメーター・エディターの TX Datapath Options タブで、次のオプションを指定します。
- TX FGT PMA
- TX FGT PLL
- TX データパス FIFO モード
デザインでは、次の TX Datapath Options を指定します。
| パラメーター | パラメーター値 |
|---|---|
| TX FGT PLL reference clock frequency | 156.25MHz を選択します。TX FGT PLL reference clock frequency は、TX FGT PLL の設定で示されているように、F-Tile Reference and System PLL Clocks Intel® FPGA IP で指定されているリファレンス・クロック周波数と一致している必要があります。out_refclk_fgt_0 をこの IP に接続する際は、F タイル PMA/FEC Direct PHY デザインの IP の接続 を参照してください。 |
図 98. TX FGT PLL の設定
| パラメーター | パラメーター値 |
|---|---|
| TX PMA interface FIFO mode | Elastic |
| Enable custom cadence generation ports and logic | tx_cadence ポートを生成します。このポートを使用し、PMA データ有効ビットをアサートおよびデアサートすることができます。このデザインでは、システム PLL 周波数が PMA クロック周波数よりも大きいため、このオプションが必要です。カスタム拍生成ポートとロジック を参照してください。 |
| TX core Interface FIFO Mode | Phase Compensation |
| TX tile FIFO Interface FIFO Mode | Phase Compensation |
| Enable TX double width transfer | オンにします。オンの場合は、sys PLL clk ソースではなく Sys PLL Clk Div2 ソースで tx_clkout ソースを駆動する必要があります。コアに提供されるクロック周波数を 2 で割り、EMIB からコアの最大周波数仕様を超えないようにします。 |
図 99. TX PMA インターフェイスのオプション