=
~r
(‘L

Real Time Instruction Trace

Programming Reference

December 2015

Revision 1.05
Order Number: 332060-004

Contents-Real Time Instruction Trace =

Intel technologies features and benefits depend on system configuration and may require enabled hardware, software, or service
activation. Learn more at intel.com, or from the OEM or retailer.

No computer system can be absolutely secure. Intel does not assume any liability for lost or stolen data or systems or any damages
resulting from such losses.

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel
products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter drafted
which includes subject matter disclosed herein.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

The products described may contain design defects or errors known as errata which may cause the product to deviate from
published specifications. Current characterized errata are available on request.

This document contains information on products, services and/or processes in development. All information provided here is subject
to change without notice. Contact your Intel representative to obtain the latest Intel product specifications and roadmaps.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for
a particular purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or
usage in trade.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained
by calling 1-800-548-4725, or by visiting http://www.intel.com/design/literature.htm.

Intel Atom, Intel Core, Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.

Copyright © 2015, Intel Corporation. All Rights Reserved.

Revision 1.05
Order Number: 332060-004

:i n tel © ’ Real Time Instruction Trace-Contents

Table of Contents

LIST OF FIGURES ... eeeeeeeeeteeeteeeeeetteeeeeeeeeeeeeeeeeeeeeeeeeeeeeeateaeteraeeattetttetsteeteemttttetttetteteesttsmeesesessmsesesssssensennes 7
[SR IO] e 1A = I SRS 8
REVISTON HISTORY .eeeereeeeteeeteeeeeeeeeeeeeeeteeeeeeeteeeteemmemese s s .. 9
1 INTRODUCTION .uuuuuuuueuueeeseneseessnssss 11
L.l OVERVIEW ..ottt ettt e e ettt e e ettt e e e ettt e e e e taaeeeeabeeeeaateeeeaasaaeeeabasaaansseseassssaeanssesaasssseassaeeensse sabeeesnsseeeennsenas 11
1.2 AVAILABILITY AND USE ...oottiiiietii ettt eette e ettt e ettt e e e et e e e aaee e eeateeeeetaeeeentseeeesaeeeensseeeensseeesnsneeesasreneens 12
1.3 FEATURES AND CAPABILITIES ..uvvtiieiteeeiiteeeeeeteeeeeteeeeereeeeeteeeeestaeeeesseeeessseseessseeesassseeessseseeaseesensseeessseeeenn 13
1.4 USING THIS SPECIFICATIONuvtiieeiteeeeicteeeeeeteeeeeteeeeeaeeeesteeeeesseeeeesssseeessseseesssesesesseeessseseeaseeeensseesssseeeens 14
2 RTIT OPERATIONAL MODEL..ciittiiiiiiiiiiiiiiiieiiiesseeeesesssesssnns 15
D2 A o I I = = RS 15
2.1.1 Trigger Enable (TrIQQEIEN) ...ttt st na et ae e sesen 15
2.1.2 Context Enable (CONEXIEN)......cccociiiieiicieeieeeeeeee sttt s et se e s 15
2.1.3 Filter ENable (FIEEIEN).....cooveeieeeeeeeeece ettt ettt te s s etaets et evsesseasen 16
2.2 CHANGE OF FLOW INSTRUCTION TRACING.....uueiiiititeeeitieecitteeeeitteeeestteeessasseeessresesessssessssesessssssssnssessssssesens 16
P N = 7= 1Y (ol =1 [0 1] 2SR 16
2.2.2 DIr€CE TranSTEIr COF L.ttt ettt eetes et e et e et eeiae e s tseeeteestsseesssessssesseeeans 16
2.2.3 INAIrE€CE TraANSTEIr COF ..ottt ettt eete e te ettt et e e sae e s tseeeteesaseeeassesssseasseeans 17
2.2.4 Near JMP Indirect and Near Call INAIrECT........c.oooovvveeeieieceeeeeeeeeeeeeeee e 17
D2 S T \\ (== T gl = 4 = LU 17
D T =T g I =Y g 15 (=] g OO] TRt 18
2.2.7 Flow Control PAcket SUMMAIYccccocieieeieieieeseese sttt s et e e se e senen 20
P2 T I =7 Yol = @ 10 1 U 1 SO S 20
b2 T R 9 11 o 10 o N =] o s RS 20
2.3.2 OULPUL WIITE BERNAVION ..ottt ettt te s s etaassensesaeasensen 21
2.4 TRACE FILTERINGttiiittteeittteeeitteeesitteeeattteeeeesteeesassaaeasraseaassasesassesaaastasesassssesansassaastssesassssesasassssnsses sreeennne 21
2.4.1 Filtering by Current Privilege LeVEel (CPL) ..ottt 21
2.4.2 FIlEEIr DY CR3.... oottt ettt ettt et e et e e et e vt et et et s b et s essateersetsess e st esseaseasan srseses 21
2.4.3 FlteriNg DY IP.....o ettt sttt et ettt et e et e te e eeaes 22
2.5 TRACE PROGRAMMINGcccetttteeeittteeeitteeeestteeeeeiteeeeeseeeaasteseeasseeeaseseaastaseeasssseeaassesaasseseaassssesassesaeassesesasaee s 22
D T R B = ot o = T g o] o] = RS 23
2.6 INTERACTION WITH OTHER COMPONENTSuutiiiiitteeeeitreeeeitreeeestreeeeetreeeesseeeessreseeeseeesesseseesseeesesseesssseeens 23
2.6.1 System ManagemMeENTt MOUE ..ottt 23
2.6.2 Virtual MAacChiNg EXTENSIONS........ooovvieeieetieeeeeeeeeeeeeeet et eeeete e tte e st e s eateeaeesaseeeseessseeseeens 24

3 CONFIGURATION AND CONTROL..ciitiiiiiiiiiiiiiiriiiiiieieesssesssesssnns 25
3.1 ENUMERATION .oeutiiitieeteeiteeeteestteestaeesteeesseesstesasaesssesssaessseesasaeasseessssansesessseasessntasanseesssessseesnseessessasansensnns 25
3.2 RTIT ACCESSIBILITY iicteiiitieeiteeiiteeeiteesreesaeestseesssesssssassasasessssassssesssessssssssssssssssssssessessssesessessssessssessssessssn 25
3.3 CPU CONTROL AND MODEL-SPECIFIC REGISTERS......uttiiiitiieeitieeeeitieeeeitteeestteeeessseesssssesessssesessssssssnnsenas 25
3.3.1 General MSR NOTES FOI RT Tcoi ittt ettt ettt eve et e esseseereeaseen 25
GG T = I I I O I T Y] U URE 26
Real Time Instruction Trace December 2015

Programming Reference v1.05
4

Contents-Real Time Instruction Trace m t |®>

3.3.3 RTIT_STATUS MSR....oooooietieeietietste ettt sttt et te et e et asa e ssase st e sasessesasessasesessns 29
3.3.4 RTIT_CNTP MSR...o oottt ettt ettt et e s st et et et st e st e sa s et atesessasesesene 30
3.3.5 RTIT_EVENTS MSR....oiieiietse ettt ettt te e ste e seee 30
3.3.6 RTIT_LIPO=-3 MSR ...ttt sttt ettt e s aente e ee 31
3.3.7 RTIT_LAST _LIP MSRu..eieiesieesie ettt ettt ettt te et 32
3.3.8 RTIT_CR3_MATCH MSR....ctieieiiieisieieiisteieitsietets e te et ts et es e e e s sastesassessesessesssensesessensesenss 32
3.3.9 RTIT_PKT_CNT MSR ..ottt ettt sttt et te et te e e s se st esessensasansensssansessssensesenss 33
3.3.10 RTIT_BASE_ADDR MSRciitieiriiieisttietsieets ettt ettt sa st sssse e essense e ens 34
3.3.11 RTIT_LIMIT_MASK MSR.....cioioieisiieietitetsteietstete e et s et ts e sesssassessssessesassessssessessasessessens 34
3.3.12 RTIT_OFFSET MSR....oicioiieieiiieistetetstetett et s et s et sta et s e et s et essssessasassessasensessasensessss 34
3.3.13 RTIT_TNT_BUFF MSR ..ottt ettt e ettt sassesasassessasenseneens 35
3.3.14 RTIT_LAST _CALL _NLIP MSR....cootoeietiieietietseste et e sttt as et s e ssta e ss e s s s s 36
4 TRACE PACKETS AND DATA TYPES ...ttt ssssssssssssssssssssesssssssssseses 37
4.1 TRACE PACKET SUMMARY ..c.utiittiittrtesutesttesteeeestesseesseensesnsesseesseesseessesssesseessesnsessesssessesssesssesseseessesssesnsesaes 37
4.2 PACKET TYPES .oettittiutetteitetete ettt st b st eh e eat et e et e et s et e b e sb e e bt e bt eheeae et ea s e s e b e b e sae ek e sbesbeebeeaeenbe s e eseeneeneenne 38
4.2.1 Packet Stream BoUNdary (PSB) ..ottt st sttt nen 38
A.2.2 TINT PACKET ...ttt sttt sttt sttt et e st te e beste st stesse st stensenessressnneas 39
4.2.3 TANQEL IP PACKET.....c.ecuieeieeieeeeee ettt ettt et et et et e s s s et e asaataessetsassessessenses 40
4.2.4 FIOW UPAALE PACKETcooceeeeeeeeeeeeee ettt ettt ettt et e e s etaets et e asesseasen 45
4.2.5 Flow Update event: Buffer OVErflOW..........ccocoovoieieieieieeeese sttt 46
4.2.6 Flow Update event: Packet CycCle COUNTEN..........occoeieieieiieeesee e 48
4.2.7 Flow Update event: Packet Generation Enable............coocooiiiiiniiiiieeeeeeee e 48
4.2.8 Flow Update event: Packet Generation Disable............cocooeviieiirieieneieeeeee e 49
4.2.9 Flow Update event: Far TranSTer ...ttt 49
4.2.10 Paging Information PacCket (PIP).......cccooiiieirieeerieeeseeseee ettt 50
i I R N = VoS IS Y O L o= Vo] 1Y 50
4.2.12 Mini Time Counter (MTC) PACKETccoov ittt 51
4.2.13 Super Time SYNC (STS) PACKET.........ooeeeeeeceeeeeeeee ettt 52
i I S O3 Y o1 [T 00 18T g} = 11 1= 53
4.2.15 CyCle ACCUIAtE MOUE........ccoocviceieeietieieeeeeee ettt sttt ettt e sttt e s sesteasaenaessessessesensen 54
4.3 SYNCHRONOUS PACKETS ...cittiteeterteritenteenteatestesseesstensesseesmeesseestasstassesseensesnsesssesseessesnsesssesssesseessesnsessesnes 54
4.3.1 Packets sent out in various SItUALIONS..........cccoveiriiieirieeese ettt 55
4.3.2 Understanding Entering/Exiting Packet Enabled Region...........cccccoovvveevveveveicieien, 59
4.4 ASYNCHRONOUS PACKET GENERATION......citttiittettrttenteeteetesutesttesteebesasesusesseessessesaeesaeesseensesnsesueesseensesnns 60
APPENDIX A: PROGRAMMING EXAMPLESctveitrreterceesseerssnressseessseessssnsssssesssssssssssssssesssassssanes 61
APPENDIX B: OPERATION CONSIDERATIONuotticterceerereerssreseseessseessssnsssseesssssssssssssssesssasssssnes 62
.1 SLEEP STATES . ittettetteetteteeitesutesttesteesestesatesseessesseesaeesseaseansesssesseensesnsesssesseessesnsesssesseesseessesnsesnee esseensesnsesns 62
4.1.1 C1/Halt/ShutdOWn SIEEP STALE.......ccooiieerieceeeee ettt 62
A.1.2 C2 SIEEP STALE ...ttt ettt ettt sas 62
O IO T O Y 1= =T o B - | 1 R STSRP 62
4.1.4 C6 and S0i1/S0i2/S0i3 SIEEP STALE......cccocveveeieeeieeeeeeee ettt rees 62
4.2 RE-ENABLING RTIT .ottt ettt b et b e sb e bt bt e bt et et et et e te b ne aenee 62
4.2.1 Re-Enabling with Same Configuration.............cccccveveieieiecieiececece ettt 63
4.2.2 Re-Enabling with Different OUtpuUt REQION........cocveieieieeeceeeeceeeee e 63
4.2.3 Re-Enabling with Different Traced REQIONccoovevveeeieiiesieeieeeecieteeteete e 63
December 2015 Real Time Instruction Trace

Programming Reference v1.05
5

:i n tel © ’ Real Time Instruction Trace-Contents

APPENDIX C: BACKGROUND AND RELATED PROCESSOR MECHANISMS......ccvveierivennens 64
4.3 EXISTING DEBUG AND PERFORMANCE MONITORING.....cccouvtitieiiiiitiriieeeeeeiirteeeseeesesssreeesessssssssesseessssssnnens 64
A4 BREAK POINT tottiiiiiittttttee i ieiittteeeeesesiaaeeeeeeesessbaseeesesesabasstesseesassbaaseeeesessbassseessesssabasssesssasaatsssesesbesseessnsssnrens 64
ST I =T 2 ¥ AT | SRR 64
4.6 PERFORMANCE MONITORING/PEBS ...ttt ettt ettt e s st e s s enta e e snans 65
4.7 DS FOR BTS/PEBS ...ttt ettt ettt e et e e e ta e e s et e e s s etaeesesaaeesssaaaessasaeeesssseeesssaeesareeeessesas 65
S R O = R T 7 1 =S TR 65
4.9 VIRTUAL MACHINE EXTENSIONcciittiuttiiieeiiiiittteeeeeieesiteeeeeeesesiateeeeesssssssseessessassssseesesssssnsseesesssssssaseseses 66

APPENDIX D: GLOSSARY AND REFERENCEcciiiiittttrreiiieitteneeereeeteeeessssesssssssessssssssssssssssssnnsnes 67
Nt O T 1017 7Y = 2N 67
4.11 REFERENCE DOCUMENTS ...utttiitiiiiiiiitteee et eieiitttereeeesesitsreessesesesssasesseessesssstesssesssesssssssssessesssssessesssesssssesees 69

APPEND X E: ERR AT A i itttiieitteiettteeetttneietenssietssssessssssssesssssssesssisssnsssssssssssssssssssssssssssssssssssnssssssnanses 70

Real Time Instruction Trace December 2015

Programming Reference v1.05
6

Contents-Real Time Instruction Trace -

List of Figures

FIGURE 1: REAL TIME INSTRUCTION TRACE OVERVIEW.coiiiitiieieteeeeeteeeeestreeeeeeeeeeetveeeesssesesssseeesnsseseesssesesnsnnens 12
FIGURE 2: RTIT PACKET HEADER LIST . uutiiiiitiie ettt ettt ettt ettt e e eetve e et e e eeateaeeenteeeeetaeseesneesetsesennsseeeennnes 37
FIGURE 3: PACKET STREAM BOUNDARY ...c.uviiiiiiiiiieiieecte ettt eetee et eeeteesteessteestbeesseessseessaeensasensaesasesssassnsessaseesneees 39
FIGURE 4: TAKEN NOT TAKEN PACKET ... uitiiiiiieccitee e stee sttt e ete e sttt e e e sate s e snta e e snteeeasstaeesassasessnsaeeesnsseeeassesennssnes 40
FIGURE 52 TARGET IP PACKET .ottt iiieeeit ettt s ettt e e sttt e s te e st e e s et e e s sataeeesataeesansseeesaseeaeansteeeassesesssneaassenesnnsene o 40
FIGURE 6: RETURN COMPRESSION WITHOUT NESTED CALLSutttiiiiitieciieeeeitteeeeiteeestveeeesateeesnaaeesssreseenasaeesnnsenas 44
FIGURE 7: RETURN COMPRESSION WITH NESTED CALLS

FIGURE 8- FLOW UPDATE PACKET ... uttiiiitiieieiittesitteeeitteeeestteesesaeeastaeeaatsesaesssaeesssasassstassaasssssssssssssastssesasssesenssenes
FIGURE 9: PAGING INFORMATION PACKETuutiiiieiiee e ettt e eitteeeeeitee e e tteeeeetteeeeeataeeesbeeaeenbaeeeeasseeeeasseeeeassesesassaeesnsnes
FIGURE 10: TRACESTOP PACKET ...uttiieiiie ettt ettt e

FIGURE 11: MINI TIME COUNTER PACKET
FIGURE 12> SUPER TIME SYNCH PACKET ..eeieeteeeieiteeeeieteeeeesteeeeesireeeeeseeeesseseesssesesassesesssssssessssssesssssessnsesessssesesnnnes
FIGURE 132 CYCLE COUNT PACKET wettiiiiitveeeeettee e eeteeeeeteeeeeteeeeeaaeeesteeeeestseseessseeesesseeeessteseeeseeeeesseesatseeenssreeesnnnes

December 2015 Real Time Instruction Trace
Programming Reference v1.05
7

:i n tel © ’ Real Time Instruction Trace-Contents

List of Tables

TABLE 1: IP TYPE IN VARIOUS PACKETStttiiiititeeiitieeeitteeeeitteeesitteeesisteeessssaeessssessasssssesasssssssssessssssssesssssssssssesenanes 19
TABLE 2: CLASSIFYING BRANCHES AND COF L....ooiiiiiieee ettt eette e e svae e e s ta e e eeaae e e saaaeeeentaeaennns 20
TABLE 32 RTIT TRACE EXAMPLEoiiittieeeitie ettt e eeitee e ettt e e ettteeesteeeeetaeeeeasaeaestseesatsesesssseaasseseesssesesasseaaeasresaannes 23
TABLE 42 RTIT CTL CONTROL REGISTER....ciiiiittieiiitiieeeitieeeeeteeeeitteeeeeteeeeessaeeestresaeaseeesaseesestesesssssessasssssesssssesanns 26
TABLE 52 CYCLE COUNTER......uttttieitttt e ettt e ectteeeeeteeeeetteeestteeaeeasaeeeasaseeaabsesaasssseaassssaeassesaaassssesassaeeeastesesasaeeaansesssens 30
TABLE 62 RTIT FILTER ENABLEottt ettt ettt eetee et e eetae e e eetaeeeeetve s e e asaeeeeaseeeesateeeeesseeseesseseeenteeeeensseeeenneeeeanes 30
TABLE 7. RTIT EVENT IDS.... oottt ettt ettt e ettt e e e e e tae e e e aaee e eeaaeeeentseeeeesseeeeesseeeensteeeenseeeenns eenseeas 31
TABLE 8: RTIT LIPO-3 ADDRESS RANGE COMPARATORSuvviiiiteeeeeteeeeeiteeeeeiseeeeeiteeeeessseeesisssesesssesessssesssnsseeenns 31
TABLE 92 RTIT LAST LIP oottt st ettt e et e s be e e be e s et e e saaeesabe e aee e taeensaeeabaeensaesatassnsees senseeenes 32
TABLE 10: RTIT CR3 COMPARATOR.....ccitteitteereeireestteestseessseestesasseesssesssssessesssssssseessssssssesssssssesesssssssessssessssessnnes 32
TABLE 11: RTIT PACKET BYTES COUNTER.....cccittittteeteeiteesteestteesteeestesesseessesssaessesssaesssessssesssssessssesssssssssensessnses 33
TABLE 12: RTIT OUTPUT BASE ADDRESS.....ccccttteeiittteeeitteeeeitteeeeitteeeesteeesisssssssssessesanns 34
TABLE 13: RTIT OUTPUT LIMIT IMASK ...ciiititiieiiieeciteeeeiteseeitteeestveeesstteeessssaestseesasssssesasssssasssessesssssessssesssssesenanes 34
TABLE 14 . RTIT OUTPUT OFFSET .oiiiiittieeeiieteeiieeeesteeeeaitteessistssassasesasssssassssssssssssssasssssesssssssssssessssssssesssssssssssesesnnns 35
TABLE 152 RTIT TNT PACKET BUFFERuttiiiitiee ettt ettt ett e e ettt e e tteeeeetveeaeettaeeeeaseeaeesteseeessaessessesaeansesananns 35
TABLE 16: RTIT LAST CALL NLIP oottt ettt ett e e et e e e eeab e e e etaee e e tbeeeeesteeeeesseeaeastesaanns 36
TABLE 17: TRACE PACKET ENABLING SUMMARYcutiiiiiiiieieiieeeeteeeeeiteeeeeseeeeeteeseessseeessssessassseseesssssesssssssasssesesnns 38
TABLE 18- LIP COMPRESSIONcuviiiiittieeeiteeeeeteeeeeitteeeeeteeeeeetaeeeeetaeeseetseseeesseeeeesseeeessseseeeseeesesseseeateeeeenssesesnsnneean s 41
TABLE 19: PACKET GENERATION UNDER DIFFERENT ENABLE CONDITIONSuvtiieiieieeereeeeereeeeetreeeeneeeeereeeens 55
TABLE 20: ASYNCHRONOUS PACKETS DESCRIPTIONSctiiiiteeeictteeeeetreeeeeteeeeeseeeesreeeeessseeessesesssseesessssessssseeeenns 60
TABLE 217 GLOSSARY etiiitteeititiitteeiteeeittesiteesiteesiseesseessseesssaeasesasassasesssesssessssesssssessssessessssssessessssessssessses seessssansessnne 67
TABLE 227 REFERENCES.....ccitttiiteiitteeitteeiteessteesiseesseessseesssesasesesssssssessasesassessssesssssessssesssssssssessessssessssesssesssssssssssessss 69
Real Time Instruction Trace December 2015
Programming Reference v1.05

8

Contents-Real Time Instruction Trace

Revision History

Date Revision |Description

February 2015 1.00 Initial Release

March 2015 1.01 Added read RTIT_CTL MSR requirement

June 2015 1.02 Added erratum ES8.

June 2015 1.03 Fix erroneous text listing RTIT_LIP1 as a limit address and
RTIT_LIP2 as a base address

August 2015 1.04 Fix intro paragraph
Update RTIT_CTL.Dest bhit behavior

December 2015 1.05 Call out BASE & MASK behavior more clearly

Document output write ordering semantics

December 2015

Real Time Instruction Trace
Programming Reference v1.05
9

Real Time Instruction Trace

1 Introduction

This document describes the programming interface of Real Time Instruction Trace (RTIT), including
trace configuration options and trace output. RTIT is available only on 3rd generation Intel® Atom™
processor (code named Silvermont)-based and 4th generation Intel Atom processor (code named
Airmont)-based products, see 1.2 for details on which products are supported.

1.1 Overview

In current Intel® architecture, Last Branch Record (LBR) and Branch Trace Store (BTS) features allow
observance of internal CPU program flow. Branch information, i.e., the source and destination
instruction pointers, can be stored in a hardware stack, or written to memory via processor support.
Debug software can reproduce program flow based on the branch addresses and source code.
However, the overhead of using BTS is very significant, while LBR only captures the last several
branches only, both limitations that prohibit their use in real-time application debugging.

Real Time Instruction Trace (RTIT) works on the same principle as BTS and LBR. It operates in parallel
to the primary processor pipeline and uses a separate output streaming mechanism that is external to
the processor. This eliminates the limitations of existing debug mechanisms and allows continuous and
efficient runtime application debugging.

RTIT encodes and compresses program flow information, such as branch targets, branch taken/not
taken indications, and carries them to the memory subsystem in real time, avoiding the use of any
processor assist methods. The memory subsystem then forwards the RTIT data out to external
receivers for debug software to post-process and reconstruct program flow.

Revision 1.05
Order Number: 332060-004

i n tel © ’ Real Time Instruction Trace

Figure 1: Real Time Instruction Trace Overview

RTIT Block
RTIT Packet
Trace generation,
Buffer triggering, CRs
Atom S &
Core © E
o =
Store Bus
] Mem_ory Retirement
Unit

Figure 1 shows how the RTIT logic fits into a System on a Chip (SOC) system. The RTIT Block
monitors the Intel® Atom™ processors core retirement pipeline and generates trace packets upon
retiring change of program flow instructions of interest. RTIT stores the traces in a trace buffer until
they are stored out to memory or to pins.

1.2 Availability and Use

The RTIT programming interface is available as model-specific feature only on certain Intel® Atom™
processors listed below. The definitions and usages of RTIT described in this document apply to those
processors models, in some cases, specific stepping. Intel® Atom™ processors supported by
Family/Model/Steppings are as follows:

Silvermont Microarchitecture:
e 0x6/0x37/0x8
e 0x6/0x5d/0x0
e 0x6/0x5d/0x1
e 0x6/0x4a/0x8
e 0x6/0x4d/0x8
e 0x6/0x5a/0x0

Airmont Microarchitecture:
e 0x6/0x4c/0x3

Real Time Instruction Trace December 2015
Programming Reference v1.05
12

Real Time Instruction Trace m t |®>

1.3 Features and Capabilities

RTIT generates a variety of packets that, along with the sources of a program, can be used to produce
an exact execution trace. The packets record information such as Linear and Target Instruction
Pointers (LIP and TIP) and direction of conditional branches within a contiguous code region (basic
blocks). In addition the packets record other contextual, timing, and bookkeeping information to
enable both functional and performance debugging of applications.

RTIT has several control and filtering capabilities to customize and compress the tracing information
collected and to append other processor state and timing information to enable debugging.

e Programmable address comparison registers can be used to qualify RTIT output by
specifying different IP ranges and masks.

e CPL and CRS3 filtering modes allow filtering based on CPL execution mode (USER ring-3 or
SUP ring-0) and on CR3 values.

When enabled and appropriately configured, RTIT will collect and generate the following types of trace
information:

Packet stream Boundary (PSB) packets: The PSB acts as a ‘heartbeat’ that is generated at regular
intervals (e.g., every 8K trace packet bytes). PSB is a unique pattern, which allows decodes to sync
into a RTIT byte stream.

Taken Not Taken (TNT) packets: TNT packets track the “direction” of direct conditional branch
(i.e., taken or not taken). TNT packets are 1 byte, including the header. 1 to 6 TNT (Taken-Not-Taken
indications) can be packed in one TNT packet with a ‘1 signifying a taken branch and a ‘O signifying a
not-taken branch that fell through to next instruction.

Target IP (TIP) packets: TIP packets record the target IP of indirect branches, exceptions, and
interrupt handlers. Up to 48 bits of IP can be stored, and the most significant bits that are identical to
the branch LIP or are entirely ‘Os can be suppressed to reduce the packet size.

Flow Update (FUP) packets: FUP packets record a variety of contextual information to aid in
decoding the trace output. These include:

o Buffer Overflow packets (FUP.OVF) indicate that the RTIT internal buffer is full and that
packets are no longer being generated.

e Periodic Cycle Counter (FUP.PCC) is periodically generated based on increments in a cycle
counter.

e Packet Generation Enable (FUP.PGE) packets are generated when RTIT is enabled, or if the
execution enters a region that is configured for RTIT tracing.

e Packet Generation Disable (FUP.PGD) packets are generated when RTIT transitions from a
packet generating mode into a disabled mode due to filtering criteria not being met, or
disabling RTIT.

e Far Transfer (FUP.FAR) packets are generated after a far transfer and will include an address
indicating where the transfer came from. It is usually generated with TIP, and appears
before the corresponding TIP in the trace output.

December 2015 Real Time Instruction Trace
Programming Reference v1.05
13

i n tel © ’ Real Time Instruction Trace

Paging Information Packet (PIP): PIP record any modifications to the CR3 register while memory
paging is enabled. This, along with process page information from the operating system, allows the
debugger to attribute linear addresses to their correct application source line.

Trace STOP (STOP) packets: STOP packets are generated when the current IP matches a region
specified by the ‘TraceStop’ filter.

Super Time Sync (STS) packets: STS packets are generated upon several processor frequency,
power, and other state global events. They will contain the value in the processor’s HW TSC, and
along with MTC are used by the debug analyzer to synchronize the traces with wall time.

Mini Time Counter (MTC) packets: MTC packets can be generated periodically based on the
processor’'s HW TSC, and along with STS are used by the debug analyzer to synchronize the traces
with wall time.

Cycle Count Packet (CCP): CCP packets contain the incremental number of core cycles since the
previous CCP, and are generated after certain other trace packets based on the configuration of the
cycle accurate mode.

1.4 Using This Specification

Chapter 1: Introduction gives an introduction to RTIT, where it is available, and describes the
features and capabilities to customize tracing information based on user needs.

Chapter 2: RTIT Operational Model provides additional details about RTIT including the enabling
and filtering, and describes essential program flow concepts that form the basis of the RTIT tracing
model.

Chapter 3: Configuration and Control details the various mechanisms necessary for configuring,
enabling, controlling, and collecting RTIT data in an operating system or Virtual Machine Monitor.

Chapter 4: Trace Packets and Data Types details the packets generated by RTIT to assist
developers in decoding RTIT data and utilizing it to recreate an application execution trace.

Real Time Instruction Trace December 2015
Programming Reference v1.05
14

Real Time Instruction Trace m t |®>

2 RTIT Operational Model

This chapter describes the overall RTIT mechanism and explains essential concepts used throughout
the remainder of the document. Reading this chapter will provide a basic understanding of how RTIT
operates, and a detailed understanding of the various features and capabilities offered by RTIT.

This chapter is organized as follows: Section 2.1 explains the different circumstances and context
during which RTIT will be generating trace packets. Section 2.2 explains the notions of flow control
that are used by the RTIT mechanism to produce an execution trace. Section 2.3 describes the
primary mechanism for streaming RTIT packets. Section 2.4 describes the different filters that can be
used to restrict which execution streams are traced by RTIT. Section 2.5 gives an overall view of RTIT
programming and provides an example of such programming. Finally, Section 2.6 describes how RTIT
will behave while the processor is in non-standard execution modes.

2.1 RTIT Enables

RTIT has a variety of enables and disables that interact to ultimately decide if a packet should be
generated. This state is referred to as Packet Enable and is synonymous with PacketGenEnable, Packet
Generation Enable or PacketEn.

When Packet Enable is set, we are in the code that RTIT is monitoring and packets are being
generated to log what is being executed. PacketEn is composed of 4 other states according to this
relationship:

PacketEn = TriggerEn && ContextEn && FilterEn

Each of these states is detailed in the following subsections.

2.1.1 Trigger Enable (TriggerEn)

TriggerEn (Trigger Enable) is the primary indicator that RTIT is active. TriggerEn is defined using two
fields:

TriggerEn = (RTIT_CTL[Trace_En] AND RTIT_CTL[TraceActive]).
Software can get the current TriggerEn value by reading the RTIT_STATUS[TriggerEn] MSR bit. When

TriggerEn is clear, RTIT is inactive and no packets are generated.

2.1.2 Context Enable (ContextEn)

Context Enable (ContextEn) indicates that the processor is in the state that RTIT is configured to
watch. For example, if RTIT is configured to watch only application code (RTIT_CTL[OS]=0), then
ContextEn will be O when the CPU is in CPLO.

December 2015 Real Time Instruction Trace
Programming Reference v1.05
15

i n tel © ’ Real Time Instruction Trace

Software can get the current ContextEn value by reading the RTIT_STATUS[ContextEn] MSR bit.
ContextEn is defined as follows:

ContextEn = I(
(RTIT_CTL[OS]=0 AND CPL=0) OR
(RTIT_CTL[USER]=0 AND CPL=1,2,3) OR
(RTIT_CTL[CR3ENn]=1 AND RTIT_CR3_MATCH !=CR3) OR
(In SMM mode) OR
(In VMX mode))

When ContextEn is cleared, many packets are not generated, including all branch packets. However,
some packets, such as the MTC, may still be generated while ContextEn is clear.

2.1.3 Filter Enable (FilterEn)

Filter Enable indicates that the CPU Instruction Pointer (IP) is within the range of the IPs that RTIT is
configured to watch. See section 2.4.3 for details on IP filtering.

Software can get the state of Filter Enable by an MSR read of RTIT_STATUS[FilterEn].

Filter enable is only ‘usually’ correct because it may be incorrect if the RANGEO/1 ranges are not set
up correctly. It is also frozen when either Trace_En or ContextEn are O.

2.2 Change of Flow Instruction Tracing

2.2.1 Basic Blocks

A program block is a section of code where no jumps or branches occur. The IPs in this block of code
need not be traced, as the CPU will execute them from start until end without redirecting code flow.
Instructions such as branches, and external events such as exceptions or interrupts, can change the
program flow. These instructions and events that change program flow are called COFI (Change of
Flow Instructions). The program block is divided into these three categories:

e Direct transfer COFI.
° Indirect transfer COFI.
e Far transfer COFI.

The following subsections describe the IA architecture COFIl events that result in trace packet
generation. For detailed description of the instructions, please refer to “Intel® 64 and 1A-32
Architectures Software Developer’s Manual Volume 2A/2B: Instruction Set Reference.”

2.2.2 Direct Transfer COFI

These types of instructions include conditional jumps, and jumps that are to a Linear Instruction
Pointer (LIP) that is embedded in the instruction bytes. It is not necessary to output the LIP of the
destination address since it can be obtained through the source code. It is only necessary to indicate
whether the conditional branch is taken or not.

2.2.2.1 Jump if condition is met (Jcc) and LOOP

To track this type of instruction, RTIT uses a single bit of TAKEN or NOT TAKEN (TNT) to indicate the
program flow after the instruction. When the condition check is evaluated to true (i.e., the branch will
Real Time Instruction Trace December 2015

Programming Reference v1.05
16

Real Time Instruction Trace m t |®>

be taken), the processor IP will update to the target IP specified in the instruction. This is encoded as
TAKEN in the RTIT TNT packet; otherwise, the program will simply go to the next LIP, and is encoded
in the TNT as NOT TAKEN.

Jcc and LOOP can be traced with TNT bits. To improve the trace packet output efficiency, RTIT will
compact several TNT bits in a single packet. This can output up to 6 consecutive TNT bits in one TNT
packet.

2.2.2.2 Unconditional Direct Jumps

There is no RTIT output for direct unconditional jumps (like JMP near relative or CALL near relative)
since they can be directly inferred from the application assembly. Direct unconditional jumps do not
generate a TNT bit or a Target IP packet.

2.2.3 Indirect Transfer COFI

Indirect transfer instructions involve updating the LIP from a register or memory location. Since the
register or memory contents can vary at any time during execution, there is no way to know the
target of the indirect transfer until the register or memory contents are read. As a result, the
disassembled code cannot be used alone to determine the target of a COFl. Therefore, RTIT must
send out the destination LIP in the trace packet for debug software to determine the target address of
the COFI.

Indirect Transfer instructions will generate a Target IP packet (TIP) which contains the target linear
address of the branch or the new instruction pointer.

2.2.4 Near JMP Indirect and Near Call Indirect

As previously mentioned, the target of an indirect COFI resides in the contents of either a register or
memory location. Therefore RTIT must expose this target address to the debug software in order to
determine the target of the COFI.

2.2.5 Near RET

When a CALL instruction executes, it pushes the address of the next instruction following the CALL
onto the stack. Upon completion of the call procedure, the RET instruction is often used to pop the
return address off of the call stack and redirect code flow back to the instruction following the call.

A RET instruction simply transfers program flow to the address it popped off the stack. Because it is
possible for software to change the Extended IP (EIP) on the stack within the call procedure prior to
executing the RET instruction, the debug software can be misled if it always assumes code flow will
return to the instruction following the last call. Therefore, even for near RET, a Target IP Packet is
sent to handle this case.

A special case is applied if the target of the RET matches the Next LIP (NLIP) of the last CALL
instruction. Then only a single TNT bit of “Taken” is generated instead of a Target IP Packet.

December 2015 Real Time Instruction Trace
Programming Reference v1.05
17

i n tel © ’ Real Time Instruction Trace

2.2.6 Far Transfer COFI

All operations that change the instruction pointer which are not near jumps are “far transfers”. This
includes exceptions, interrupts, traps, and instructions that do far transfers (i.e. SYSENTER, SYSEXIT,
SYSCALL, SYSRET, software interrupts, far jump, far call, far RET and IRET).

Far transfers that produce RTIT packets will produce a Flow Update Packet of type Far Transfer
(FUP.FAR) followed by a Target IP packet (TIP); unless the far transfer also jumps out of the filtered
region while keeping ContextEn==1. A far transfer that causes FilterEn to become 0 but keeps
ContextEn at 1 will produce Flow Update packet of type PacketGenerationDisable (FUP.PGD instead of
FUP.FAR) followed by a Target IP packet. This is a form of compression and simplifies the hardware.

The following table indicates exactly which LIP will be included in the FUP.FAR or FUP.PGD generated
by a far transfer.

Real Time Instruction Trace December 2015
Programming Reference v1.05
18

Real Time Instruction Trace

intel)

Table 1: IP Type in Various Packets

Event

Flow Update LIP

Note

Far CALL/JUMP
SYSENTER/SYSEXIT
SYSCALL/SYSRET
Far RET

IRET

Address of next instruction
(Next Linear Instruction
Pointer)

This does not match LBR FROM field, which
records the address of the branch
instruction. RTIT trace analysis does not
need this flow update packet since it should
know where the branch is, but it would
require more hardware to suppress it.

External Interrupt
NMI/SMI

Traps

Machine Check (trap-
like)

Address of next instruction
(NLIP) that would have
been executed

This matches the LBR FROM field value and
also the EIP value which is saved onto the
stack. Remember that LBRs are linear (not
effective) addresses for Intel® Atom™
processors.

INIT/SIPI

Address of next instruction
(NLIP) that would have
been executed

Lower certainty on INIT and SIPI behavior.
Not important to RTIT usage.

(FUP.PGD only)
Walking out or region
Non-far transfer that
changes ContextEn to O

Address of next instruction
(NLIP) that would have
been executed

LBRs have no such concept.

(FUP.PGD only)
Near jump out of region

Address of next instruction
(NLIP) that would have
been executed

This does not match the LBR field, which
would record the address of the branch
instruction.

Exceptions/Faults
Machine check (fault-
like)

Address of the instruction
which took the
exception/fault (Current
LIP)

This matches the LBR FROM field value and
also the EIP value which is saved onto the
stack.

Asynchronous Flow Update
Packet

Buffer Overflow

Periodic Cycle Counter

Address of next instruction
(NLIP/BLIP) that will execute
after the instruction where the
condition occurred

LBRs have no such concept.

PacketEn goes from 0 to 1

(includes VM-entry and
RSM)

Address of where we entered
region (BLIP or NLIP)

LBRs have no such concept.

VM-exit

Address that is saved into the
VMCS as guest RIP

LBRs have no such concept.

December 2015

Real Time Instruction Trace
Programming Reference v1.05
19

i n tel © ’ Real Time Instruction Trace

2.2.7 Flow Control Packet Summary
The following table summarized the trace packets as per each instruction

Table 2: Classifying branches and COFI

Instruction Packet Note

Jce/LOOP TNT Branch taken/not taken packet.

Near Jump (indirect) Target IP Branch destination LIP(BLIP) is sent in target IP
Near Call (indirect) Packet.

Near RET

Far Transfers, including: Flow Update LIP before the far transfer. Same as recorded in LBRs
Far Jump/CALL (or would be pushed onto stack).

Far RET/IRET T IP B h destination LIP(BLIP) i i IP
Exception/Interrupt/Trap arget rark1c estination () is sent in target
SYSENTER/SYSEXIT Packet.

SYSCALL/SYSRET

2.3 Trace Output

RTIT packet data is written by the CPU to the memory subsystem. RTIT writes use the USWC memory
type, regardless of what is specified by the MTRRs. The use of platform physical addressing means
that RTIT writes are not affected by page tables or EPT tables.

The RTIT output destination is specified by writing a platform physical address to the
RTIT_BASE_ADDR MSR to serve as the destination base, and a mask value to the RTIT_LIMIT_MASK
MSR to dictate the size of the region. The RTIT_BASE_ADDR value should be aligned to the size of the
output region (RTIT_LIMIT_MASK+1), as the base value used will be RTIT_BASE_ADDR &
~RTIT_LIMIT_MASK.

The RTIT_OFFSET MSR holds the offset into the region specified by RTIT_BASE_ADDR and
RTIT_LIMIT_MASK. Thus the physical address to which RTIT stores are directed is computed as
follows:

RTIT_BASE_ADDR + (RTIT_OFFSET & RTIT_LIMIT_MASK)

Note that the buffer is treated as circular, and hence once the offset value reaches the mask value,
writes will wrap around and write at offset O again.

2.3.1 Debug Port

In order to send RTIT output to a debug port, the platform-specific memory-mapped 1/0 (MMIO)
address for the port of interest should be written to the RTIT_BASE_ADDR MSR, with the
RTIT_LIMIT_MASK value set to match the size of the desired MMIO range. As described above, RTIT
output will be written to this address range in a circular fashion.

Please see SoC documentation to determine which debug port options exist for your platform.

Real Time Instruction Trace December 2015
Programming Reference v1.05
20

Real Time Instruction Trace m t |®>

2.3.2 Output Write Behavior

RTIT output writes pass through the memory subsystem, and like other memory writes RTIT output is
written out in 64 byte lines. In some cases, it is possible to observe partial line writes of RTIT data.
This can result from enabling trace with an unaligned RTIT_OFFSET value (which would cause output
to begin in the middle of the line), or from a fencing operation causing a line to be written out before
it is filled (which would cause the RTIT bytes to cease before the end of the line). RTIT disable or bus
locks are examples of operations that could prematurely flush an RTIT line. The implication is that it
is possible to see individual RTIT writes that may include invalid bytes at the beginning and/or at the
end of the line. However, as long as RTIT_OFFSET is not manipulated by software, the resulting
output will be contiguous and non-overlapping.

USWC writes, like those employed by RTIT, are not strongly ordered, and thus it is possible (though
rare) to observe a younger line written to its endpoint before an older line. When an RTIT drain is
executed (e.g., on write to RTIT_CTL), all RTIT writes are fenced, and hence any re-ordering should
have no effect on the resulting output bytes. For this reason it is recommended that collectors always
disable RTIT before collecting trace output. If RTIT output is examined or collected before a drain is
executed, as is typical when writes are directed to a trace hub or arbiter, the collector may need to be
able to re-order any out-of-order writes. In such a case, please refer to the corresponding spec for
the trace hub employed to determine the possibility of receiving out-of-order RTIT writes from the
CPU.

When out-of-order RTIT writes are exposed, the degree of software re-ordering required is limited.
Let us enumerate the lines comprising the output region as A, B, ..., n, such that line A is the first 64-
byte line in the buffer, and n is the last. Software can discern which line has been received by
examining the address bits offset from the output base address in RTIT_OUTPUT_BASE. In this
scenario, we’ll define an “iteration” as the sequence of writes to A..n before the output wraps back to
A. Using line B as an example, it is possible that, before a given iteration of B is seen, younger lines
C..n from the same iteration may be seen. It is even possible that the next iteration of A could be
seen before B. However, it is not possible to first see a younger iteration of B, nor any still younger
lines (e.g., next iterations of C..n).

2.4 Trace Filtering

24.1 Filtering by Current Privilege Level (CPL)

RTIT provides the ability to specify whether tracing occurs when code is executing in CPLO or not. RTIT
can be configured to be enabled only when in CPLO, when in CPL1/2/3, or at all CPLs. When in a non-
enabled CPL, the Context Enable is cleared.

The CPL value that is used to determine the RTIT Context Enable is read after instruction retirement.
This means that speculative CPL changed will not affect the RTIT state. For example, a page fault
which triggers a change of CPL from 3 to O will not send out a TIP packet if RTIT is configured to only
monitor CPL 1/2/3. A FUP packet will still be generated to indicate a traced region was left.

2.4.2 Filter by CR3

To reduce the total trace size, it is important to be able to trace a single application without requiring
software intervention every time applications are switched.

Since CR3 (the page table pointer) is the primary piece of CPU state that indicates which application is
running, RTIT can enable or disable tracing depending on the CR3 value. This is done through the CR3
filtering/matching feature.

December 2015 Real Time Instruction Trace

Programming Reference v1.05
21

i n tel © ’ Real Time Instruction Trace

If the RTIT user desires to only trace a single CR3, then they can program that CR3 value into
RTIT_CR3_MATCH MSR and set RTIT_CTL.CR3En. When the CR3 value does not match that in
RTIT_CR3_MATCH, the processor will disable RTIT (ContextEn forced to 0). When the CR3 value does
match of RTIT_CR3_MATCH, then the processor will stop disabling RTIT because of the CR3 value
(although it could remain disabled due to other filters like CPL). If RTIT_CTL.CR3En is O, then all CR3s
are monitored (RTIT tracing is not disabled by the CR3 value).

The Paging Information Packet is sent out in various situations to explain to the analyzer which app is
being executed. When a non-paging mode is entered (CRO.PG is cleared), a paging information packet
is generated. This will not affect the current CR3 filtering because it is not a direct change in the value
of CR3.

OS-specific techniques will need to be used to discover the CR3 value that corresponds to a particular
already-running application. If the application can only be started when RTIT is already running, other
techniques (like OS debug hooks, OS modification or using a special driver) may need to be used to
discover the CR3 value and subsequently update the RTIT CR3 filters.

2.4.3 Filtering by IP

RTIT can be configured to enable control flow packet generation only when the CPU is executing code
within certain IP ranges. This is controlled with FilterEn, which, if IP filtering is enabled, is set only
when the IP is in one of the ranges specified by SW. If the IP is outside of these ranges, then FilterEn
is cleared and no control flow packets are enabled.

IP filtering is enabled using the RTIT_EVENTS MSR. This MSR configures use of the RTIT_LIP[0123]
MSRs, which are used to define the base and limit of the range(s) in which tracing is enabled. Current
RTIT implementations have 2 such ranges, known as RANGEO and RANGE1. RANGEO is defined by
[RTIT_LIPO..RTIT_LIP2-1], while RANGEL1 is defined by [RTIT_LIP1..RTIT_LIP3-1].

EventlIDs are used for IP filtering, and for TraceStop. RTIT_EVENTS[Filter Event ID] and
RTIT_EVENTS[Stop Trace Event ID] are programmed with event ID encodings, which are details in
section 3.3.5. Note that the Filter event ID and TraceStop event ID are two separate fields, and thus
different conditions can cause those actions.

To save power, the comparison of the IP to the RANGEOQ/1 ranges is done only when
RTIT_CTL[Trace_En] is set. This means that the FilterEn value will not be changed by the IP when
Trace_En is cleared. This means that leaving Trace_En set but disabling RTIT by having Trace_Active
cleared consumes more power than if Trace_En was also cleared.

It is important to note that, though no control flow packets are generated from outside of the IP filter
ranges, some packets can be generated at this time. Periodic packets, such as MTC and PSB, can still
be generated when FilterEn is O.

2.5 Trace Programming

RTIT provides the end-user with a highly configurable set of tracing capabilities and programmable
events for both performance analysis and debug. RTIT is configured through code execution via the
WRMSR and RDMSR instructions.

Real Time Instruction Trace December 2015
Programming Reference v1.05
22

Real Time Instruction Trace m t |®>

2.5.1 Trace Example

If RTIT was programmed to trace all CPLs and the address filters were restricting the IP range to
instruction between 0x100-0x110, then the following RTIT packets would be generated:

Table 3: RTIT Trace Example

Step | CLIP NLIP Instruction RTIT output

1 0x020 | 0x023 | Jmp to 102 1. FUP.PacketGenEnable of 102 (BLIP)

2 0x100 | 0x102 | Xor eax, eax Nothing

3 0x102 | O0x105 | Far JMP to 983 1. FUP.PacketGenDisable of 105 (NLIP)

2. TIP of 983 (BLIP)

4 0x983 | 0x985 | Far JMP to 10E 1. FUP.PacketGenEnabled of 10E (BLIP)

5 Ox10E | 0x113 | Divide that causes 1. FUP.PacketGenDisabled of 10E (NLIP)
Divide by O fault 2. TIP of 345 (BLIP)

Fault handler at

345

6 0x345 | 0x348 | Add (first instr of Nothing
fault handler

7 348 34c POP ret address to Nothing
RAX

8 34c 350 Modify RAX to point | Nothing
to 113

9 350 353 PUSH new ret addr | Nothing

of 113 onto stack

10 353 357 IRET to 113 Nothing (since 113 is outside of range)

2.6 Interaction with Other Components

2.6.1 System Management Mode

RTIT is always disabled during System Management Mode (SMM). Whenever a System Management
Interrupt (SMI) occurs, the CPU will set an internal “We are in SMM mode” bit that will force

ContextEn to become O if it was not already O. If this caused PacketEn to transition from 1 to O, then a
FUP.PGD will be sent out with the address of the next instruction that would have executed had the
SMI not occurred. A TIP packet is never generated on an SMI since the SMI results in ContextEn is O
(and any operation that disabled ContextEn does not send out a TIP).

Whenever an RSM occurs, the CPU will clear the internal “We are in SMM mode” bit, which will thus
stop forcing ContextEn to 0. In the normal case, this will cause ContextEn to return to the value that it
was before the SMI. If that causes PacketEn to transition from O to 1, then a FUP.PGE will be
generated with the address of the target of the RSM (the next instruction to execute after the RSM). If
the SMM return address was not modified, this will usually be the same address as was seen on the
FUP.PGD generated on the preceding SMI.

December 2015 Real Time Instruction Trace
Programming Reference v1.05
23

i n tel © ’ Real Time Instruction Trace

As discussed earlier, the software SMM handler could do various things that would cause the RSM to
return to a different instruction or mode than was executing before the SMI. For example, it could
change the return address to be outside of the filtered region when it was inside the filtered region
before the SMI. Or it could change the CR3 value.

The RSM simply clears the “We are in SMM mode” bit that was forcing ContextEn to 0. FilterEnable
and the CPL will also be re-evaluated automatically based on the processor settings mode that the
RSM is loading (whether it was the same as that before the SMI or not).

The RSM re-evaluates whether the CR3 matches the RTIT_CR3_MATCH MSR, and determines the SMI
does not. Therefore, it is not needed on the SMI since the SMI will clear ContextEn and it cannot be
set until the RSM occurs.

2.6.2 Virtual Machine EXtensions

RTIT is always disabled in Virtual Machine EXtensions (VMX) host mode (this mode is also referred to
as VMM, root mode, or the hypervisor).

Whenever a VM exit occurs, the CPU will set an internal “We are in VMM mode” bit that will force
ContextEn to become O if it was not already 0. If this caused PacketEn to transition from 1 to O, then a
FUP.PGD will be sent out with the address that is saved into the VMCS as the RIP. A TIP packet is
never generated on a VM exit since the VM exit results in ContextEn of O (and any operation that
disabled ContextEn does not send out a TIP).

Whenever a VM entry occurs, the CPU will clear the internal “We are in VMM mode” bit, which will thus
stop forcing ContextEn to 0. In the normal case, this will cause ContextEn to return to the value that it
was before the VM exit. If that causes PacketEn to transition from O to 1, then a FUP.PGE will be
generated with the address of the target of the VM entry. If the VMCS guest RIP field was not
modified, this will usually be the same address as was seen on the FUP.PGE generated on the
preceding VM exit. VM entry will re-evaluate whether CR3 matches RTIT_CR3_MATCH.

Real Time Instruction Trace December 2015
Programming Reference v1.05
24

Real Time Instruction Trace n t |®>

3 Configuration and Control

This chapter details the mechanism for configuring, enabling and controlling the operation of RTIT. It
is intended for developers who are writing software to support RTIT operation, whether in the OS/VMM
or in the debug controller. This section can also be used as a reference for programming the relevant
RTIT MSRs.

3.1 Enumeration
For Intel® Atom™ processors, RTIT is not architectural and is therefore not enumerated in any way.

To determine if the processor does support RTIT, the user can verify the Family, Model, and Stepping,
and then use a try-accept to test for RTIT functionality.

3.2 RTIT accessibility

RTIT is configured via model-specific registers (MSRs). These can be controlled through either JTAG
or ring-0 software. For details about JTAG access, please contact your Intel sales representative.

3.3 CPU Control and Model-Specific Registers

3.3.1 General MSR notes for RTIT

All RTIT MSRs are described below, and are duplicated per logical processor. Until the RTIT_CTL
MSR (0x768) has been read any attempt to write any RTIT MSR, or read any RTIT MSR
other than RTIT_CTL, will result in a #GP fault.

For all RTIT MSRs, any MSR write that attempts to change (which usually means ‘set’) bits marked
reserved will cause a #GP fault. RTIT MSRs are not cleared by INIT.

December 2015 Real Time Instruction Trace
Programming Reference v1.05
25

intel)

Real Time Instruction Trace

3.3.2 RTIT_CTL MSR

Table 4: RTIT CTL Control Register

Bit Name Description

0 Trace_En Global Enable Disable

1 Cycle_Acc 0 : Cycle Accurate Mode is Disabled
1: Cycle Accurate Mode is Enabled

2 0sS 0: Indicates OS level COFI will not be traced
1: Indicates OS level COFI will be traced

3 User 1: Indicates USER level COFI will be traced
0: Indicates USER level COFI will not be traced

4 STS on_CR3 Generates STS packet on CR3 changes

[6:5] Rsvd Reserved

7 CR3En 0: Disables CR3 Filtering
1: Enables CR3 Filtering

8 Dest 0: Force TraceStop to be written to address offset 0xC0O. See
details below.
1: No special treatment of TraceStop packet

9 MTC_En 0: MTC packet generation disabled
1: Enabled

10 STS_En 0: STS packet generation disabled
1: Enabled

11 Cmprs_Ret Compresses Return address

12 Less_Pkts Generate less packets to improve bandwidth

13 TraceActive This is another overall RTIT valid bit which needs to be set
for TriggerEnable to be 1 (just like RTIT_CTL.Trace_En). Itis
different from Trace_En in that it can be cleared by the
TraceStop action. An MSR write that clears TraceActive
should not cause a TraceStop packet, however.

[15:14] MTC_Range Defines TSC granularity
00:TSC[14:7]
01:TSC[16:9]
02:TSC[18:11]
03:TSC[20:13]

[31:16] Reserved Reserved

Real Time Instruction Trace
Programming Reference v1.05
26

December 2015

Real Time Instruction Trace m t |®>

RTIT_CTL [0]: Trace_En

Trace_En globally turns on or off the RTIT architecture. The reset value of Trace_En is O, disabling
RTIT by default.

It is recommended that software set Trace_En before setting TraceActive (below) when enabling
tracing. Similarly, software should clear TraceActive before clearing Trace_En when disabling tracing.
If both Trace_En and TraceActive transition 0->1 or 1->0 in the same WRMSR, undefined behavior
may result.

RTIT_CTL [1]: CYCLE_ACC

CYCLE_ACC enables or disables the cycle accurate mode of RTIT COFI tracing. When set (1’'bl), a
cycle count packet is appended to all outbound RTIT traffic with the exception of the PSB packet.

RTIT_CTL [2]: OS

The OS bit is used to indicate that whether CPLO code (usually OS code) should be traced. See 2.4.1.
When this bit is cleared and the current CPL is O, then the ContextEn will be O (which disables many
things, including COFI packets).

RTIT_CTL [3]: USER

The USER bit is used to indicate whether CPL1, CPL2, and CPL3 code (usually application code) should
be traced or not. See 2.4.1. When this bit is cleared and the current CPL is 1, 2 or 3 (>0), then the
ContextEn will be 0 (which disables many things including COFI packets).

RTIT_CTL [4]: STS_on_CR3

This bit being set will cause Super Time Synch Packets to be sent out on MOV CR3 operations
RTIT_CTL [6:5]: Reserved.

RTIT_CTL [7]: CR3En

When this bit is set, CR3 filtering is enabled and ContextEn will be zero if the CR3 value does not
matches what is in RTIT_CR3_MATCH MSR. When ContextEn is 0, COFI packets are not generated.

When this bit is cleared, the CR3 value RTIT_CR3_MATCH do not affect ContextEn. This behavior is
described in more detail in the “Tracing one app (CR3 filtering)” section.

RTIT_CTL [8]: Dest

Controls treatment of the TraceStop packet. When cleared, the write of the TraceStop packet will
force the lower 8 bits of the write address to OxCO. This should only be used when RTIT output is
directed to dedicated trace hardware such as PTIl, on SoCs that support such specialized TraceStop
treatment.

When set, there is no special treatment of the TraceStop packet. This mode supports output to DRAM,
or to dedicated trace hardware such as PTI.

RTIT_CTL [9]: MTC_En

Used to enable or disable the Mini Time Counter. See Mini Time Counter (MTC) Packet section for
more details.

December 2015 Real Time Instruction Trace
Programming Reference v1.05
27

i n tel © ’ Real Time Instruction Trace

RTIT_CTL[10]: STS_En

Used to enable or disable Synch packet generation. A value of ‘1’ enables STS packet generation,
while a value of ‘O’ disables STS packet generation.

RTIT_CTL [11]: CMPRS_RET

Setting this bit changes the behavior of indirect transfer packet generation. When set, near RET
instructions may be compressed against the NLIP of the preceding call. See Indirect Transfer
compression for returns (RET) section for more details.

RTIT_CTL [12]: LESS_PKTS

The LESS_PKTS bit is used to decrease the number of packets generated and thereby decrease
bandwidth demands. Please refer to the following table for a complete representation of which
packets are inhibited when LESS_PKTS is set. Enable Groups and Packet Generation.

RTIT_CTL [13]: TraceActive

The TraceActive bit must be set before anything in RTIT occurs because it is part of TriggerEnable.
Thus when TraceActive is 0, TriggerEnable is O (and RTIT is off). It is cleared by TraceStop action and
is settable only by an MSR write (e.g. WRMSR).

As described in the Trace_En section above, TraceActive should only be modified while Trace En is
set.

RTIT_CTL [15:14]: MTC Range

MTC Count allows the user to specify which bits of the TSC will become bit 15:8 of the MTC packet as
follows:

MTC Range Resulting TSC in MTC packet
00 TSC[14:7]

01 TSC[16:9]

02 TSC[18:11]

03 TSC[20:13]

RTIT_CTL[31:16] Reserved.
MSR writes to any reserved bits results in a #GPO fault.

MSR writes to RTIT_CTL will cause an RTIT drain and will not end until that drain is completed and all
RTIT stores are globally observed. This ensures that any changes to RTIT_CTL are visible in memory
by the time the MSR write completes. Thus, if software turns off RTIT by clearing TraceActive, it can

count on fields like RTIT_OFFSET to be correct and constant after the MSR write.

A write to RTIT_CTL that causes RTIT_STATUS[TriggerEn] to become set (meaning that
RTIT_CTL[Trace_En] and RTIT_CTL[TraceActive] are both set and one of them was not set before) will
cause the PSB packet to be sent out.

An MSR write to RTIT_CTL that causes PacketEn to become 0 (e.g. by clearing OS or USR or by setting
CR3EN) will cause a FUP.PGD packet to be generated. An MSR write that causes PacketEn to become O
by clearing TraceActive or Trace_En may not generate a FUP.PGD. See the FUP.PGD section for more
details.

Real Time Instruction Trace December 2015
Programming Reference v1.05
28

Real Time Instruction Trace m t |®>

An MSR write to RTIT_CTL that causes PacketEn to become 1 will cause a FUP.PGE packet to be sent.
The MSR address is 0x768. Reset value = 0.

3.3.3 RTIT_STATUS MSR

RTIT_STATUS can be read or written by software, but some bits (like ContextEn) are read-only and
cannot be modified directly. Any writes that attempt to modify these read-only bits will have no effect
on the value; but will not cause a #GP (they are not checked as reserved bits).

The MSR address is 0x769. Reset value=0.

RTIT STATUS [O]: FilterEn
This is the bit that is set upon entering a tracing region and cleared upon leaving a tracing region. It
indicates that the IP is within the filtered regions (but can be manipulated). It is one of the three
enables that make up Packet Enable.

RTIT STATUS [1]: ContextEn

This is the context enable bit. It is set when we are in the right context for tracing (e.g. correct CPL,
CR3 value, not in VMM/SMM, etc.) It is one of the three enables that make up Packet Enable. It is
read-only.

RTIT STATUS [2]: TriggerEn

This is the trigger enable bit. It is set when RTIT is overall enabled (RTIT_CTL[Trace_En] AND
RTIT_CTL[TraceActive]). It is one of the three enables that make up Packet Enable and is read-only.

RTIT STATUS [3]: Buffer_Overflow

This bit indicates that there is currently a buffer overflow that is pending. Under certain circumstances,
software may need to context-switch that information.

It is read/write and can be updated directly by the processor or by software through MSR writes.
RTIT STATUS [31:4]: RESERVED

MSR writes to any reserved bits result in a #GPO fault.

December 2015 Real Time Instruction Trace
Programming Reference v1.05
29

i n tel © ’ Real Time Instruction Trace

3.3.4 RTIT_CNTP MSR
The MSR address is 0x76B. Reset Value: 22'b0

Table 5: Cycle Counter

Bit Name Description
[21:0] CNTP Count is a 22-bit incrementing counter value
[31:22] Reserved Reserved

CNTP is a 22-bit incrementing counter that counts up at a rate equal to the processor core clock.
CNTP can be used to generate info on cycle count between packets in cycle accurate mode. More
details of this counter are in the “Cycle Counter” section.

The counter value CNTP is reset back to 22’b0, when

e CPU reset occurs (warm or cold)

e CNTP overflows

e A packet is sent out with a cycle count (the current value of CNTP). This occurs on almost

every packet sent out in Cycle Accurate mode (RTIT_CTL[Cycle_Acc]).

The RTIT hardware will attempt to send out a Periodic Cycle Count (FUP.PCC) Packet when the MSB
(bit 21) of CNTP is set and it is in the appropriate mode. For more details, see the “Flow Update event:
Packet Cycle Counter” section.
3.3.5 RTIT_EVENTS MSR
The MSR address is Ox76C. Reset Value: 32'b0.

Table 6: RTIT Filter Enable

Bit Name Description

[2:0] Filter_Event_ID EventID which will control RTIT_STATUS.FilterEn (Filter
Enable mode bit)

[5:3] TraceStop_Event_ID EventID which will cause a TraceStop action (Stops Tracing
by clearing RTIT_CTL.TraceActive)

[31:6] Reserved Reserved

RTIT_EVENTS provides a means to conditionally enable RTIT based on the user defined events.

Filter Event_ID allows the user to specify for which IPs FilterEnable should be set and for which it
should be clear.

TraceStop Event_ID allows the user to specify which IPs should cause the TraceStop action. The
TraceStop action stops tracing (by clearing RTIT_CTL.TraceActive it causes TriggerEn to become 0)
and also causes a TraceStop packet to be generated.

Real Time Instruction Trace December 2015
Programming Reference v1.05
30

Real Time Instruction Trace

Table 7. RTIT Event IDs

EventID Event Name

000 RANGEO

001 RANGE1

010 RANGEQO || RANGE1
011 Reserved

100 Reserved

101 Reserved

110

111

The table above describes the event IDs that can be programmed to either the Filter_Event_ID or the
TraceStop_Event_ID. RANGEO is defined as [RTIT_LIPO..RTIT_LIP2-1], while RANGEL1 is defined as
[RTIT_LIP1..RTIT_LIP3-1]. When RANGEO and/or RANGEL is used for one of these fields, this means
that software that either executes an instruction at the base IP (specified by RTIT_LIPO or RTIT_LIP1),
or executes a taken branch or event whose target is within the range, will trigger the chosen behavior,
be it FilterEn assertion to enable tracing, or TraceStop. Correspondingly, software that executes an
instruction at the limit IP (RTIT_LIP2 or RTIT_LIP3), or a taken branch or event whose target is
outside the range, will cause the CPU to detect that software has left the range.

This means that if RTIT is enabled from within RANGEO or RANGE1, the CPU will not trigger the
FilterEn or TraceStop behavior until either the IP at the range base is executed, or until a taken
branch or event lands within the range. If neither of these occurs before the software executes the IP
at the limit of the range, no triggering will occur.

Note that behavior when RANGEO and RANGE1 overlap, or when the range base is greater than the

range limit, is undefined. Software should avoid such scenarios, as undesirable behavior is likely to
ensue.

3.3.6 RTIT_LIPO-3 MSR
MSR numbers are 0x760, 0x761, 0x762, 0x763. Reset Value: 64’b0

Table 8: RTIT LIPO-3 Address Range Comparators

Bit Name Description

[47:0] LIPN_ADDR Holds the LIP for comparison for TraceLIPN

[63:48] | LIP_SIGN_EXT Reads return the sign-extended value of bit 47 for
each bit in this field. Writes to it have no effect.

These MSRs serve to define the base and limit values for RANGEO and RANGE1. See the
RTIT_EVENTS MSR for more details.

Note that reads of this MSR will return O for the LIP_SIGN_EXT field.

December 2015 Real Time Instruction Trace
Programming Reference v1.05
31

i n tel © ’ Real Time Instruction Trace

3.3.7 RTIT_LAST_LIP MSR
The MSR address is: OX76E. Reset Value: 64’b0.

Table 9: RTIT Last LIP

Bit Name Description

[15:0] CMPRS_LIP_LOW Holds LIP[31:16] of the compressed LIP

[31:16] | CMPRS_LIP_HIGH Holds LIP[47:32] of the compressed LIP

[32] CMPRS_LIP_Valid Indicates the compressed LIP values are valid

[63:33] | Reserved Reserved as 0

e LIP Compression compares the LIP being sent out with the last LIP sent out, so only 16-bit
chunks which change are sent out. This further reduces the bandwidth requirements required
by RTIT.

e LIP Compression applies to the Flow Update Packets (FUP) and Target IP Packet.

0 Compressed LIP High (CLH) is compared against LIP[47:32] of the packet being
generated, while Compressed LIP Low is compared against LIP 31.

This entire MSR is cleared to O (reset value) when a PSB packet is generated and when a buffer
overflow packet is generated.

3.3.8 RTIT_CR3_MATCH MSR

RTIT CR3 Match registers have the programmed CR3 value for trace filtering. The bits correspond to
that defined in CR3 MSR. The MSR address is: Ox777. Reset Value: 64’b0.

Table 10: RTIT CR3 Comparator

Bit Name Description

[63:36] | Reserved Reserved

[35:5] CR3[35:5] | Matches contents of CR3 [35:5]

[4:0] Reserved Reserved

Real Time Instruction Trace December 2015
Programming Reference v1.05
32

Real Time Instruction Trace m t |®>

3.3.9 RTIT_PKT_CNT MSR

RTIT_PKT_CNT holds the number of packet bytes that have been generated since either RTIT was
initially enabled, or a PSB packet was last sent out. It does not count packets that were dropped due
to buffer overflow, since they were not ‘generated’. The Pkt_Cnt should also count the bytes in the
PSB packet itself.

The MSR address is: 0x77C. Reset Value: 0x00020000.

Table 11: RTIT Packet Bytes Counter

Bit Name Description

[13:0] Pkt_Cnt Contains the number of bytes of RTIT packets generated since last PSB
[15:14] | Reserved Reserved

[17:16] | Pkt_Mask Indicates what value of Pkt_Cnt should cause a PSB to be sent out

The Pkt_Mask field indicates when a PSB packet will be sent (which will also clear the Pkt_Cnt field).

Pkt Mask value PSB sent out when this Pkt Cnt bit is set
11 (size of roughly 2047 bytes)
12 (size of roughly 4095 bytes)
13 (size of roughly 8191 bytes)
14 (size of roughly 16383 bytes) <= Note that bit 14 does not
exist in this field; so consider it overflow of this field.

WNPFEO

So when the Pkt_Mask value is 0, then the PSB is sent out (and the Pkt_Cnt field is cleared) whenever
the Pkt_Cnt value has a value with bit 11 set.

Usually, this would occur due to a packet being generated and causing the Pkt_Cnt to be incremented
to a value that has the ‘monitored bit’ set. So unless an MSR write is used to change Pkt_Cnt, a
Pkt_Mask of 2 will mean that a PSB packet is generated approximately every 8095 (2*3-1) packet
bytes generated. The Pkt_Cnt will also be reset to 0.

This is evaluated on writes to this MSR and after every packet is generated. Thus the PSB will not be
generated in the middle of a packet, but may be generated between the packets generated by a single
instruction.

For example: Pkt_Cnt value is Oxffc and PKT_Mask is 1 and a far transfer then occurs. It generates a
FUP.FAR packet of 7 bytes (no compression was possible) and a FUP.TIP packet of 5 bytes (zero
compression). The hardware detects the FUP.FAR would increase the Pkt_Cnt to a value with bit 12 set
(the monitored bit). As a result, it changes the Pkt_Cnt to O (not 3, which is what would happen if we
simply cleared bit 12 of the output). Then a PSB packet is generated (which is 9 bytes in size), and
the Pkt_Cnt is incremented to a value of 9. Then the FUP.TIP is sent out and the Pkt_Cnt is
incremented by 5 to a value of OXE. The end result is the packets sent out are FUP.FAR, PSB, FUP.TIP
and the Pkt_Cnt goes from Oxffc to OxE.

December 2015 Real Time Instruction Trace
Programming Reference v1.05
33

i n tel © ’ Real Time Instruction Trace

The PSB packet clears out the last LIP and last CALL NLIP compression; however, this does not take
effect until the packet that caused the Pkt_Cnt overflow is drained from the internal RTIT buffer into
memory unit buffers. This means that some number of packets in the trace after the PSB packet may
not have the last LIP and last CALL NLIP compression. On Intel® Atom™ processors, the LAST_LIP and
LAST_CALL_NLIP compression are guaranteed to be cleared no more than 4 packets after the PSB
packet.

3.3.10 RTIT_BASE_ADDR MSR

The MSR address is: 0x770. Reset Value: OXxFDCO00000.

Table 12: RTIT Output Base Address

Bit Name Description
[5:0] Reserved Reserved as 0
[35:6] Base Phys Addr The physical base address for the RTIT output
[63:36] Reserved Reserved as 0

RTIT_BASE_ADDR holds the physical base address where the RTIT packets will be written. The
hardware uses RTIT_BASE_ADDR & RTIT_LIMIT_MASK as the output base address. This means that
any bit which is set in both the base and mask MSR will be treated as if it was O in the base for all
address calculations. For this reason, it is recommended to ensure that the RTIT_BASE_ADDR value is
aligned to the size of the region (RTIT_LIMIT_MASK+1).

3.3.11 RTIT_LIMIT_MASK MSR

The MSR address is: 0x771. Reset Value: Ox7F.

Table 13: RTIT Output Limit Mask

Bit Name Description

[5:0] Rsvd_as_1 Reserved as 3F

[21:6] Mask_Value Mask value ANDed with RTIT write pointer offset
[31:22] Reserved Reserved

The CPU will AND this value to the RTIT base offset to figure out when the RTIT base offset pointer
need to wrap back to 0. Since this field is defined up to bit 21, an RTIT output buffer of up to 4 MB in
size (2%%) can be supported.

The hardware uses RTIT_BASE_ADDR & RTIT_LIMIT_MASK as the output base address. This means
that any bit which is set in both the base and mask MSR will be treated as if it was O in the base for all
address calculations. For this reason, it is recommended to ensure that the RTIT_BASE_ADDR value is
aligned to the size of the region (RTIT_LIMIT_MASK+1).

3.3.12 RTIT_OFFSET MSR
The MSR address is: 0x772. Reset Value: 32’bh000.

Real Time Instruction Trace December 2015
Programming Reference v1.05
34

Real Time Instruction Trace m t |®>

Table 14: RTIT Output Offset

Bit Name Description

[21:0] Offset Holds the value added to base to determine write address

This MSR holds the offset within the current RTIT buffer. Adding it to the RTIT base will tell which
physical address the next RTIT output byte should be sent to.

Since the value in this MSR will change as bytes drain from internal RTIT buffers, it can change even
when no packets are being generated. To ensure that it is ‘settled’ an RTIT-draining operation should
be done (like a WRMSR to RTIT_CTL) between the last thing can generate a packet and an accesses to
this MSR.

3.3.13 RTIT_TNT_BUFF MSR
The TNT_BUFF MSR should be initialized by writing a value of 1 instead of 0. Software should not
attempt to write all zeroes to this MSR, as the hardware may not function correctly and may not
generate the correct packets. A MSR write that attempts to write a value of all zeroes will cause a
#GP.

The MSR address is Ox77D. This register is reset to a value of 1'b1.

Table 15: RTIT TNT Packet Buffer

Bit Name Description

[6:0] TNT Corresponds to TNT packet byteO.

All bits to the right of the MSB are valid when the MSB is set (1) (just like the actual TNT packet.)

RTIT_TNT_BUFF is a R/W MSR used to accumulate TNT packet bit