

# Intel<sup>®</sup>Arria<sup>®</sup> 10 Native Floating-Point DSP Intel<sup>®</sup> FPGA IP User Guide



UG-20028 | 2017.11.06 Latest document on the web: PDF | HTML





# Contents

| 1 Intel <sup>®</sup> Arria <sup>®</sup> 10 Native Floating-Point DSP Intel <sup>®</sup> FPGA IP User Guide | 3 |
|------------------------------------------------------------------------------------------------------------|---|
| 1.1 Parameterizing the Intel Arria 10 Native Floating-Point DSP Intel FPGA IP                              |   |
| 1.2 Intel Arria 10 Native Floating-Point DSP Intel FPGA IP Parameters                                      |   |
| 1.3 Intel Arria 10 Native Floating-Point DSP Intel FPGA IP Signals                                         | 7 |
| 1.4 Document Revision History                                                                              | 8 |



# 1 Intel<sup>®</sup> Arria<sup>®</sup> 10 Native Floating-Point DSP Intel<sup>®</sup> FPGA IP User Guide

# **1.1 Parameterizing the Intel Arria 10 Native Floating-Point DSP Intel FPGA IP**

Select different parameters to create an IP core suitable for your design.

- 1. In Intel Quartus<sup>®</sup> Prime Pro Edition, create a new project that targets a Intel Arria 10 device.
- In IP Catalog, click Library ➤ DSP ➤ Primitive DSP ➤ Intel Arria 10 Native Floating Point DSP.
   The Intel Arria 10 Native Floating-Point DSP IP Core IP parameter editor opens.
- 3. In the **New IP Variation** dialog box, enter an **Entity Name** and click **OK**.
- 4. Under **Parameters**, select the **DSP Template** and the **View** you want for your IP core
- 5. In the DSP Block View, switch the clock or reset of each valid register.
- 6. For **Multiply Add** or **Vector Mode 1**, click the **Chain In** multiplexer in the GUI to select input from chainin port or Ax port.
- 7. Click the **Adder** symbol in the GUI to select addition or subtraction.
- 8. Click the **Chain Out** multiplexer in the GUI to enable chainout port.
- 9. Click Generate HDL.
- 10. Click Finish.

## **1.2 Intel Arria 10 Native Floating-Point DSP Intel FPGA IP** Parameters

#### Table 1. Parameters

| Parameter    | Value                                                                                    | Default Value    | Description                                                                                                                                    |
|--------------|------------------------------------------------------------------------------------------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| DSP Template | Multiply<br>Add<br>Multiply Add<br>Multiply Accumulate<br>Vector Mode 1<br>Vector Mode 2 | Multiply         | Select the desired operational mode for the DSP block.<br>The selected operation is reflected in the <b>DSP</b><br><b>Block View</b> .         |
| View         | Register Enables<br>Register Clears                                                      | Register Enables | Options to select clocking scheme or reset<br>scheme for registers view. The selected<br>operation is reflected in the <b>DSP Block View</b> . |
|              | 1                                                                                        | 1                | continued                                                                                                                                      |

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.





| Parameter                                                                                                                                                                                                                                                                                          | Value                                 | Default Value | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                    |                                       |               | Select <b>Register Enables</b> for <b>DSP Block View</b><br>to show registers clocking scheme. You can<br>change the clocks for each of the registers in<br>this view.<br>Select <b>Register Clears</b> for <b>DSP Block View</b> to<br>show registers reset scheme. Turn on <b>Use</b><br><b>Single Clear</b> to change the registers reset<br>scheme.                                                                                                                                                                                           |
| Use Single Clear                                                                                                                                                                                                                                                                                   | On or off                             | Off           | <pre>Turn on this parameter if you want a single<br/>reset to reset all the registers in the DSP block.<br/>Turn off this parameter to use different reset<br/>ports to reset the registers.<br/>Turn on for clear 0 on output register; turn off<br/>for clear 1 on output register.<br/>Clear 0 for input registers uses aclr[0]<br/>signal.<br/>Clear 1 for output and pipeline registers uses<br/>aclr[1] signal.<br/>All input registers use aclr[0] reset signal. All<br/>output and pipeline registers use aclr[1]<br/>reset signal.</pre> |
| DSP View Block.                                                                                                                                                                                                                                                                                    | 1                                     | 1             | r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Chain In Multiplexer<br>(14)                                                                                                                                                                                                                                                                       | Enable<br>Disable                     | Disable       | Click on the multiplexer to enable chainin port.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Chain Out Multiplexer<br>(12)                                                                                                                                                                                                                                                                      | Disable<br>Enable                     | Disable       | Click on the multiplexer to enable chainout port.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Adder (13)                                                                                                                                                                                                                                                                                         | +<br>-                                | +             | Click on the <b>Adder</b> symbol to select addition or subtraction mode.                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Register Clock<br>ax_clock (2)<br>ay_clock (3)<br>az_clock (4)<br>mult_pipeline_cloc<br>k(5)<br>ax_chainin_pl_cloc<br>k(7)<br>adder_input_clock<br>(9)<br>adder_input_2_clo<br>ck (10)<br>output_clock (11)<br>accumulate_clock<br>(1)<br>accum_pipeline_cl<br>ock (6)<br>accum_adder_cloc<br>k(8) | None<br>Clock 0<br>Clock 1<br>Clock 2 | Clock 0       | <ul> <li>To bypass any register, toggle the register clock to None.</li> <li>Toggle the register clock to:</li> <li>Clock 0 to use clk[0] signal as the clock source</li> <li>Clock 1 to use clk[1] signal as the clock source</li> <li>Clock 2 to use clk[2] signal as the clock source</li> <li>You can only change these settings when you select Register Enables in View parameter.</li> </ul>                                                                                                                                               |



## Figure 1. DSP Block View



#### Table 2.DSP Templates

| DSP Templates       | Description                                                                                                                                                                                                                                                                                                                                                                                                                            |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Multiply            | Performs single precision multiplication operation and applies<br>the following equation:<br>• Out = Ay * Az                                                                                                                                                                                                                                                                                                                           |
| Add                 | <ul> <li>Performs single precision addition or subtraction operation and applies the following equations:.</li> <li>Out = Ay + Ax</li> <li>Out = Ay - Ax</li> </ul>                                                                                                                                                                                                                                                                    |
| Multiply Add        | <ul> <li>This mode performs single precision multiplication, followed by addition or subtraction operations and applies the following equations.</li> <li>Out = (Ay * Az) - chainin</li> <li>Out = (Ay * Az) + chainin</li> <li>Out = (Ay * Az) - Ax</li> <li>Out = (Ay * Az) + Ax</li> </ul>                                                                                                                                          |
| Multiply Accumulate | <ul> <li>Performs floating-point multiplication followed by floating-point addition or subtraction with the previous multiplication result and applies the following equations:</li> <li>Out(t) = [Ay(t) * Az(t)] - Out (t-1) when accumulate signal is driven high.</li> <li>Out(t) = [Ay(t) * Az(t)] + Out (t-1) when accumulate port is driven high.</li> <li>Out(t) = Ay(t) * Az(t) when accumulate port is driven low.</li> </ul> |
| Vector Mode 1       | Performs floating-point multiplication followed by floating-point<br>addition or subtraction with the chainin input from the previous<br>variable DSP block and applies the following equations:                                                                                                                                                                                                                                       |
|                     | continued                                                                                                                                                                                                                                                                                                                                                                                                                              |



| DSP Templates | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|               | <ul> <li>Out = (Ay * Az) - chainin</li> <li>Out = (Ay * Az) + chainin</li> <li>Out = (Ay * Az) , chainout = Ax</li> </ul>                                                                                                                                                                                                                                                                                                                                                    |
| Vector Mode 2 | <ul> <li>Performs floating-point multiplication where the IP core feeds the multiplication result is directly to chainout. The IP core then adds or subtracts the chainin input from the previous variable DSP block from input Ax as the output result.</li> <li>This mode applies the following equations: <ul> <li>Out = Ax - chainin , chainout = Ay * Az</li> <li>Out = Ax + chainin , chainout = Ay * Az</li> <li>Out = Ax , chainout = Ay * Az</li> </ul> </li> </ul> |



## **1.3 Intel Arria 10 Native Floating-Point DSP Intel FPGA IP Signals**

### Figure 2. Intel Arria 10 Native Floating-Point DSP Intel FPGA IP Signals

The figure shows the input and output signals of the IP core.





| Signal Name    | Туре   | Width | Default | Description                                                                                                                                                                                                                                                                                                                          |
|----------------|--------|-------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ax[31:0]       | Input  | 32    | Low     | <ul> <li>Input data bus to the multiplier.</li> <li>Available in: <ul> <li>Add mode</li> </ul> </li> <li>Multiply-Add mode without chainin and chainout feature</li> <li>Vector Mode 1</li> <li>Vector Mode 2</li> </ul>                                                                                                             |
| ay[31:0]       | Input  | 32    | Low     | Input data bus to the multiplier.<br>Available in all floating-point operational modes.                                                                                                                                                                                                                                              |
| az[31:0]       | Input  | 32    | Low     | Input data bus to the multiplier.<br>Available in:<br>• Multiply<br>• Multiply Add<br>• Multiply Accumulate<br>• Vector Mode 1<br>• Vector Mode 2                                                                                                                                                                                    |
| chainin[31:0]  | Input  | 32    | Low     | Connect these signals to the chainout signals from the preceding floating-point DSP IP core.                                                                                                                                                                                                                                         |
| clk[2:0]       | Input  | 3     | Low     | Input clock signals for all registers.<br>These clock signals are only available if any of the<br>input registers, pipeline registers, or output register<br>is set to <b>Clock0</b> or <b>Clock1</b> or <b>Clock2</b> .                                                                                                             |
| ena[2:0]       | Input  | 3     | High    | <pre>Clock enable for clk[2:0]. These signals are active-High.   ena[0] is for Clock0   ena[1] is for Clock1   ena[2] is for Clock2</pre>                                                                                                                                                                                            |
| aclr[1:0]      | Input  | 2     | Low     | Asynchronous clear input signals for all registers.<br>These signals are active-high.<br>Use <b>aclr[0]</b> for all input registers and use <b>aclr[1]</b><br>for all pipeline and output registers.                                                                                                                                 |
| accumulate     | Input  | 1     | Low     | <ul> <li>Input signal to enable or disable the accumulator feature.</li> <li>Assert this signal to enable feedback the adder's output.</li> <li>De-assert this signal to disable the feedback mechanism.</li> <li>You can assert or de-assert this signal during runtime.</li> <li>Available in Multiply Accumulate mode.</li> </ul> |
| chainout[31:0] | Output | 32    | -       | Connect these signals to the chainin signals of the next floating-point DSP IP core.                                                                                                                                                                                                                                                 |
| result[31:0]   | Output | 32    | _       | Output data bus from IP core.                                                                                                                                                                                                                                                                                                        |

### Table 3. Intel Arria 10 Native Floating-Point DSP Intel FPGA IP Input Signals

## **1.4 Document Revision History**

Document revision history for the Intel Arria 10 Native Floating-Point DSP Intel FPGA IP User Guide.

1 Intel<sup>®</sup> Arria<sup>®</sup> 10 Native Floating-Point DSP Intel<sup>®</sup> FPGA IP User Guide UG-20028 | 2017.11.06



| Date          | Version    | Changes                       |
|---------------|------------|-------------------------------|
| November 2017 | 2017.11.06 | Removed Clear type parameter. |
| May 2016      | 2016.05.30 | Initial release.              |