




























































































































































































































































































































































































































































































































































mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Vectored%20Interrupt%20Controller%20Core%20(UG-01085%202014.24.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Functional Description
Figure 28-2: VIC Block Diagram

Control Status Registers

csr_access
(Avalon-MM slave
from processor)

Interrupt
Request
Block

interrupt_controller_in
(optional Avalon-ST

VIC daisy chain input)

Vector
Generation

Block

Priority
Processing

Block

interrupt_controller_out
(Avalon-ST to processor or
to interrupt_controller_in

of another VIC)

clk
(clock)

irq_input
(external interrupt input)

External Interfaces
The following sections describe the external interfaces for the VIC core.

clk

clk is a system clock interface. This interface connects to your system’s main clock source. The interface’s
signals are clk and reset_n.

irq_input

irq_input comprises up to 32 single-bit, level-sensitive Avalon interrupt receiver interfaces. These
interfaces connect to interrupt sources. There is one irq signal for each interface.

interrupt_controller_out

interrupt_controller_out is an Avalon-ST output interface, as defined in the VIC Avalon-ST
Interface Fields, configured with a ready latency of 0 cycles. This interface connects to your processor or
to the interrupt_controller_in interface of another VIC. The interface’s signals are valid and data.

Table 28-1: interrupt_controller_out and interrupt_controller_in Parameters

Parameter Value

Symbol width 45 bits
Ready latency 0 cycles

interrupt_controller_in

interrupt_controller_in is an optional Avalon-ST input interface, as defined in VIC Avalon-ST
Interface Fields, configured with a ready latency of 0 cycles. Include this interface in the second, third,
etc, VIC components of a daisy-chained multiple VIC system. This interface connects to the
interrupt_controller_out interface of the immediately-preceding VIC in the chain. The interface’s
signals are valid and data.

UG-01085
2014.24.07 Functional Description 28-3

Vectored Interrupt Controller Core Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Vectored%20Interrupt%20Controller%20Core%20(UG-01085%202014.24.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


The interrupt_controller_out and interrupt_controller_in interfaces have identical Avalon-ST
formats so you can daisy chain VICs together in SOPC Builder when you need more than 32 interrupts.
interrupt_controller_out always provides valid data and cannot be back-pressured.

Table 28-2: VIC Avalon-ST Interface Fields

4
4
4
3

4
2

4
1

4
0

3
9

3
8

3
8

3
7

... 2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 0

RHA (1) RRS (2) R
N
M
I 
(
2
)

RIL (2)

Table 28-2 :

1. RHA contains the 32-bit address of the interrupt handling routine.
2. Refer to The INT_CONFIG Register Map Table for a description of this field.

csr_access

csr_access is a VIC CSR interface consisting of an Avalon-MM slave interface. This interface connects
to the data master of your processor. The interface’s signals are read, write, address, readdata, and
writedata.

Table 28-3: csr_access Parameters

Parameter Value

Read wait 1 cycle
Write wait 0 cycles
Ready latency 4 cycles

For information about the Avalon-MM slave and Avalon-ST interfaces, refer to the Avalon Interface
Specifications.

Functional Blocks
The following main design blocks comprise the VIC core:

• Interrupt request block
• Priority processing block
• Vector generation block

The following sections describe each functional block.

Interrupt Request Block

The interrupt request block controls the input interrupts, providing functionality such as setting interrupt
levels, setting the per-interrupt programmable registers, masking interrupts, and managing software-
controlled interrupts. You configure the number of interrupt input ports when you create the component.
Refer to Parameters section for configuration options.

28-4 Functional Blocks
UG-01085

2014.24.07

Altera Corporation Vectored Interrupt Controller Core

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Vectored%20Interrupt%20Controller%20Core%20(UG-01085%202014.24.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


This block contains the majority of the VIC CSRs. The CSRs are accessed via the Avalon-MM slave
interface.

Optional output from another VIC core can also come into the interrupt request block. Refer to the Daisy
Chaining VIC Cores section for more information.

Each interrupt can be driven either by its associated irq_input signal (connected to a component with an
interrupt source) or by a software trigger controlled by a CSR (even when there is no interrupt source
connected to the irq_input signal).

Figure 28-3: Interrupt Request Block

irq_input
(external interrupt input)

INT_RAW_STATUS INT_ENABLE INT_PENDING

SW_INTERRUPT

RIL
per port

PortId[5:0]
x32

RRS[5:0]
x32

RNMI
x32

RIL[5:0]
x32

RRS
per port

RNMI
per port

Priority Processing Block

The priority processing block chooses the interrupt with the highest priority. The block receives informa‐
tion for each interrupt from the interrupt request block and passes information for the highest priority
interrupt to the vector generation block.

The interrupt request with the numerically-largest RIL has priority. If multiple interrupts are pending
with the same numerically-largest RIL, the numerically-lowest IRQ index of those interrupts has priority.

The RIL is a programmable interrupt level per port. An RIL value of zero disables the interrupt. You
configure the bit width of the RIL when you create the component. Refer to the Parameters section for
configuration options.

Vector Generation Block

The vector generation block receives information for the highest priority interrupt from the priority
processing block. The vector generation block uses the port identifier passed from the priority processing
block along with the vector base address and bytes per vector programmed in the CSRs during software
initialization to compute the RHA.

Table 28-4: RHA Calculation

RHA = (port identifier x bytes per vector) + vector base address

The information then passes out of the vector generation block and the VIC using the Avalon-ST
interface. Refer to the VIC Avalon-ST Interface Fields table for details about the outgoing information.
The output from the VIC typically connects to a processor or another VIC, depending on the design.

UG-01085
2014.24.07 Functional Blocks 28-5

Vectored Interrupt Controller Core Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Vectored%20Interrupt%20Controller%20Core%20(UG-01085%202014.24.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Daisy Chaining VIC Cores

You can create a system with more than 32 interrupts by daisy chaining multiple VIC cores together. This
is done by connecting the interrupt_controller_out interface of one VIC to the optional
interrupt_controller_in interface of another VIC. For information about enabling the optional input
interface, refer to the Parameters section.

For performance reasons, always directly connect VIC components. Do not include other components
between VICs.

When daisy chain input comes into the VIC, the priority processing block considers the daisy chain input
along with the hardware and software interrupt inputs from the interrupt request block to determine the
highest priority interrupt. If the daisy chain input has the highest RIL value, then the vector generation
block passes the daisy chain port values unchanged directly out of the VIC.

You can daisy chain VICs with fewer than 32 interrupt ports. The number of daisy chain connections is
only limited to the hardware and software resources. Refer to the Latency Information section for details
about the impact of multiple VICs.

Altera recommends setting the RIL width to the same value in all daisy-chained VIC components. If your
RIL widths are different, wider RILs from upstream VICs are truncated.

Latency Information

The latency of an interrupt request traveling through the VIC is the sum of the delay through each of the
blocks. Clock delays in the interrupt request block and the vector generation block are constants. The
clock delay in the priority processing block varies depending on the total number of interrupt ports.

Table 28-5: Clock Delay Latencies

Number of Interrupt
Ports

Interrupt Request
Block Delay

Priority Processing
Block Delay

Vector Generation
Block Delay

Total Interrupt
Latency

2 – 4 2 cycles 1 cycle 1 cycle 4 cycles
5 – 16 2 cycles 2 cycles 1 cycle 5 cycles
17 – 32 2 cycles 3 cycles 1 cycle 6 cycles

When daisy-chaining multiple VICs, interrupt latency increases as you move through the daisy chain
away from the processor. For best performance, assign interrupts with the lowest latency requirements to
the VIC connected directly to the processor.

Register Maps
The VIC core CSRs are accessible through the Avalon-MM interface. Software can configure the core and
determine current status by accessing the registers.

Each register has a 32-bit interface that is not byte-enabled. You must access these registers with a master
that is at least 32 bits wide.

28-6 Register Maps
UG-01085

2014.24.07

Altera Corporation Vectored Interrupt Controller Core

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Vectored%20Interrupt%20Controller%20Core%20(UG-01085%202014.24.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Table 28-6: Control Status Registers

Offset Register Name Access Reset
Value

Description

0 – 31 INT_CONFIG<n> R/W 0 There are 32 interrupt configuration registers
(INT_CONFIG0 – INT_CONFIG31). Each register
contains fields to configure the behavior of its
corresponding interrupt. If an interrupt input
does not exist, reading the corresponding register
always returns zero, and writing is ignored. Refer
to the INT_CONFIG Register Map table for the
INT_CONFIG register map.

32 INT_ENABLE R/W 0 The interrupt enable register. INT_ENABLE holds
the enabled status of each interrupt input. The 32
bits of the register map to the 32 interrupts
available in the VIC core. For example, bit 5
corresponds to IRQ5. (1)
Interrupt that are not enabled are never
considered by the priority processing block, even
when the interrupt input is asserted. This applies
to both maskable and non-maskable interrupts.

33 INT_ENABLE_SET W 0 The interrupt enable set register. Writing a 1 to a
bit in INT_ENABLE_SET sets the corresponding bit
in INT_ENABLE. Writing a 0 to a bit has no effect.
Reading from this register always returns 0. (1)

34 INT_ENABLE_CLR W 0 The interrupt enable clear register. Writing a 1 to
a bit in INT_ENABLE_CLR clears corresponding bit
in INT_ENABLE. Writing a 0 to a bit has no effect.
Reading from this register always returns 0. (1)

35 INT_PENDING R 0 The interrupt pending register. INT_PENDING
shows the pending interrupts. Each bit
corresponds to one interrupt input.

If an interrupt does not exist, reading its
corresponding INT_PENDING bit always returns 0,
and writing is ignored.

Bits in INT_PENDING are set in the following ways:

An external interrupt is asserted at the VIC
interface and the corresponding INT_ENABLE bit
is set.

An SW_INTERRUPT bit is set and the
corresponding INT_ENABLE bit is set.

INT_PENDING bits remain set as long as either
condition applies. Refer to the Interrupt Request
Block for details. (1)

UG-01085
2014.24.07 Register Maps 28-7

Vectored Interrupt Controller Core Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Vectored%20Interrupt%20Controller%20Core%20(UG-01085%202014.24.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Offset Register Name Access Reset
Value

Description

36 INT_RAW_STATUS R 0 The interrupt raw status register. INT_RAW_
STATUS shows the unmasked state of the
interrupt inputs.

If an interrupt does not exist, reading the
corresponding INT_RAW_STATUS bit always
returns 0, and writing is ignored.

A set bit indicates an interrupt is asserted at the
interface of the VIC. The interrupt is asserted to
the processor only when the corresponding bit in
the interrupt enable register is set. (1)

37 SW_INTERRUPT R/W 0 The software interrupt register. SW_INTERRUPT
drives the software interrupts. Each interrupt is
ORed with its external hardware interrupt and
then enabled with INT_ENABLE. Refer to the
Interrupt Request Block for details. (1)

38 SW_INTERRUPT_SET W 0 The software interrupt set register. Writing a 1 to
a bit in SW_INTERRUPT_SET sets the
corresponding bit in SW_INTERRUPT. Writing a 0
to a bit has no effect. Reading from this register
always returns 0. (1)

39 SW_INTERRUPT_CLR W 0 The software interrupt clear register. Writing a 1
to a bit in SW_INTERRUPT_CLR clears the
corresponding bit in SW_INTERRUPT. Writing a 0
to a bit has no effect. Reading from this register
always returns 0. (1)

40 VIC_CONFIG R/W 0 The VIC configuration register. VIC_CONFIG
allows software to configure settings that apply to
the entire VIC. Refer to the VIC_CONFIG
Register Map table for the VIC_CONFIG register
map.

41 VIC_STATUS R 0 The VIC status register. VIC_STATUS shows the
current status of the VIC. Refer to the VIC_
STATUS Register Map table for the VIC_STATUS
register map.

42 VEC_TBL_BASE R/W 0 The vector table base register. VEC_TBL_BASE
holds the base address of the vector table in the
processor’s memory space. Because the table
must be aligned on a 4-byte boundary, bits 1:0
must always be 0.

28-8 Register Maps
UG-01085

2014.24.07

Altera Corporation Vectored Interrupt Controller Core

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Vectored%20Interrupt%20Controller%20Core%20(UG-01085%202014.24.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Offset Register Name Access Reset
Value

Description

43 VEC_TBL_ADDR R 0 The vector table address register. VEC_TBL_ADDR
provides the RHA for the IRQ value with the
highest priority pending interrupt. If no interrupt
is active, the value in this register is 0.

If daisy chain input is enabled and is the highest
priority interrupt, the vector table address
register contains the RHA value from the daisy
chain input interface.

Table 28-6 :

1. This register contains a 1-bit field for each of the 32 interrupt inputs. When the VIC is
configured for less than 32 interrupts, the corresponding 1-bit field for each unused interrupts
is tied to zero. Reading these locations always returns 0, and writing is ignored. To determine
which interrupts are present, write the value 0xffffffff to the register and then read the register
contents. Any bits that return zero do not have an interrupt present.

Table 28-7: The INT_CONFIG Register Map

Bits Field Name Access Reset
Value

Description

0:5 RIL R/W 0 The requested interrupt level field. RIL contains the interrupt
level of the interrupt requesting service. The processor can use
the value in this field to determine if the interrupt is of higher
priority than what the processor is currently doing.

6 RNMI R/W 0 The requested non-maskable interrupt field. RNMI contains the
non-maskable interrupt mode of the interrupt requesting
service. When 0, the interrupt is maskable. When 1, the
interrupt is non-maskable.

7:12 RRS R/W 0 The requested register set field. RRS contains the number of
the processor register set that the processor should use for
processing the interrupt. Software must ensure that only
register values supported by the processor are used.

13:3
1

Reserved

For expanded definitions of the terms in the INT_CONFIG Register Map table, refer to the Exception
Handling chapter of the Nios II Software Developer’s Handbook.

UG-01085
2014.24.07 Register Maps 28-9

Vectored Interrupt Controller Core Altera Corporation

Send Feedback

http://www.altera.com/literature/hb/nios2/n2sw_nii52006.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52006.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Vectored%20Interrupt%20Controller%20Core%20(UG-01085%202014.24.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Table 28-8: The VIC_CONFIG Register Map

Bits Field Name Access Reset
Value

Description

0:2 VEC_SIZE R/W 0 The vector size field. VEC_SIZE specifies the number of bytes
in each vector table entry. VEC_SIZE is encoded as log2
(number of words) - 2. Namely:

0—4 bytes per vector table entry

1—8 bytes per vector table entry

2—16 bytes per vector table entry

3—32 bytes per vector table entry

4—64 bytes per vector table entry

5—128 bytes per vector table entry

6—256 bytes per vector table entry

7—512 bytes per vector table entry

3 DC R/W 0 The daisy chain field. DC serves the following purposes:

Enables and disables the daisy chain input interface, if present.
Write a 1 to enable the daisy chain interface; write a 0 to
disable it.

Detects the presence of the daisy chain input interface. To
detect, write a 1 to DC and then read DC. A return value of 1
means the daisy chain interface is present; 0 means the daisy
chain interface is not present.

4:31 Reserved

Table 28-9: The VIC_STATUS Register Map

Bits Field Name Access Reset
Value

Description

0:5 HI_PRI_IRQ R 0 The highest priority interrupt field. HI_PRI_IRQ contains the
IRQ number of the active interrupt with the highest RIL.
When there is no active interrupt (IP is 0), reading from this
field returns 0.

When the daisy chain input is enabled and it is the highest
priority interrupt, then the value read from this field is 32.

Bit 5 always reads back 0 when the daisy chain input is not
present.

6:3
0

Reserved

31 IP R 0 The interrupt pending field. IP indicates when there is an
interrupt ready to be serviced. A 1 indicates an interrupt is
pending; a 0 indicates no interrupt is pending.

28-10 Register Maps
UG-01085

2014.24.07

Altera Corporation Vectored Interrupt Controller Core

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Vectored%20Interrupt%20Controller%20Core%20(UG-01085%202014.24.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Parameters
Generation-time parameters control the features present in the hardware.The table below lists and
describes the parameters you can configure.

Table 28-10: Parameters for VIC Core

Parameter Legal Values Description

Number of
interrupts

1 – 32 Specifies the number of irq_input interrupt interfaces.

RIL width 1 – 6 Specifies the bit width of the requested interrupt level.
Daisy chain
enable

True / False Specifies whether or not to include an input interface for
daisy chaining VICs together.

Because multiple VICs can exist in a single system, SOPC Builder assigns a unique interrupt controller
identification number to each VIC generated.

Keep the following considerations in mind when connecting the core in your SOPC Builder system:

• The CSR access interface (csr_access) connects to a data master port on your processor.
• The daisy chain input interface (interrupt_controller_in) is only visible when the daisy chain

enable option is on.
• The interrupt controller output interface (interrupt_controller_out) connects either to the EIC

port of your processor, or to another VIC’s daisy chain input interface (interrupt_controller_in).
• For SOPC Builder interoperability, the VIC core includes an Avalon-MM master port. This master

interface is not used to access memory or peripherals. Its purpose is to allow peripheral interrupts to
connect to the VIC in SOPC Builder. The port must be connected to an Avalon-MM slave to create a
valid SOPC Builder system. Then at system generation time, the unused master port is removed during
optimization. The most simple solution is to connect the master port directly into the CSR access
interface (csr_access).

• SOPC Builder automatically connects interrupt sources when instantiating components. When using
the provided HAL device driver for the VIC, daisy chaining multiple VICs in a system requires that
each interrupt source is connected to exactly one VIC. You need to manually remove any extra
connections.

Altera HAL Software Programming Model
The Altera-provided driver implements a HAL device driver that integrates with a HAL board support
package (BSP) for Nios II systems. HAL users should access the VIC core via the familiar HAL API.

Software Files
The VIC driver includes the following software files. These files provide low-level access to the hardware
and drivers that integrate with the Nios II HAL BSP. Application developers should not modify these files.

UG-01085
2014.24.07 Parameters 28-11

Vectored Interrupt Controller Core Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Vectored%20Interrupt%20Controller%20Core%20(UG-01085%202014.24.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


• altera_vic_regs.h—Defines the core’s register map, providing symbolic constants to access the low-level
hardware.

• altera_vic_funnel.h, altera_vic_irq.h, altera_vic_irq.h, altera_vic_irq_init.h—Define the prototypes and
macros necessary for the VIC driver.

• altera_vic.c, altera_vic_irq_init.c, altera_vic_isr_register.c, altera_vic_sw_intr.c, altera_vic_set_level.c,
altera_vic_funnel_non_preemptive_nmi.S, altera_vic_funnel_non_preemptive.S, and
altera_vic_funnel_preemptive.S—Provide the code that implements the VIC driver.

• altera_<name>_vector_tbl.S—Provides a vector table file for each VIC in the system. The BSP
generator creates these files.

Macros
Macros to access all of the registers are defined in altera_vic_regs.h. For example, this file includes
macros to access the INT_CONFIG register, including the following macros:

#define IOADDR_ALTERA_VIC_INT_CONFIG(base, irq)       __IO_CALC_ADDRESS_NATIVE(base,
irq)
#define IORD_ALTERA_VIC_INT_CONFIG(base, irq)         IORD(base, irq)
#define IOWR_ALTERA_VIC_INT_CONFIG(base, irq, data)   IOWR(base, irq, data)
#define ALTERA_VIC_INT_CONFIG_RIL_MSK (0x3f)
#define ALTERA_VIC_INT_CONFIG_RIL_OFST (0)
#define ALTERA_VIC_INT_CONFIG_RNMI_MSK (0x40)
#define ALTERA_VIC_INT_CONFIG_RNMI_OFST (6)
#define ALTERA_VIC_INT_CONFIG_RRS_MSK (0x1f80)
#define ALTERA_VIC_INT_CONFIG_RRS_OFST (7)

For a complete list of predefined macros and utilities to access the VIC hardware, refer to the following
files:

• <install_dir>\ip\altera\altera_vectored_interrupt_controller\top\inc\altera_vic_regs.h
• <install_dir>\ip\altera\altera_vectored_interrupt_controller\top\HAL\inc\altera_vic_funnel.h
• <install_dir>\ip\altera\altera_vectored_interrupt_controller\top\HAL\inc\altera_vic_irq.h

28-12 Macros
UG-01085

2014.24.07

Altera Corporation Vectored Interrupt Controller Core

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Vectored%20Interrupt%20Controller%20Core%20(UG-01085%202014.24.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Data Structure

Table 28-11: Device Data Structure

#define ALT_VIC_MAX_INTR_PORTS (32)

typedef struct alt_vic_dev

{

void *base; /* Base address of VIC */

alt_u32 intr_controller_id; /* Interrupt controller ID */

alt_u32 num_of_intr_ports; /* Number of interrupt ports */

alt_u32 ril_width; /* RIL width */

alt_u32 daisy_chain_present; /* Daisy-chain input present */

alt_u32 vec_size; /* Vector size */

void *vec_addr; /* Vector table base address */

alt_u32 int_config[ALT_VIC_MAX_INTR_PORTS]; /* INT_CONFIG settings

for each interrupt */

} alt_vic_dev;

VIC API
The VIC device driver provides all the routines required of an Altera HAL external interrupt controller
(EIC) device driver. The following functions are required by the Altera Nios II enhanced HAL interrupt
API:

UG-01085
2014.24.07 Data Structure 28-13

Vectored Interrupt Controller Core Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Vectored%20Interrupt%20Controller%20Core%20(UG-01085%202014.24.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


• alt_ic_isr_register ()
• alt_ic_irq_enable()
• alt_ic_irq_disable()
• alt_ic_irq_enabled()

These functions write to the register map to change the setting or read from the register map to check
the status of the VIC component thru a memory-mapped address.

For detailed descriptions of these functions, refer to the to the HAL API Reference chapter of the Nios
II Software Developer’s Handbook.

The table below lists the API functions specific to the VIC core and briefly describes each. Details of
each function follow the table.

Table 28-12: Function List

Name Description

alt_vic_sw_interrupt_set() Sets the corresponding bit in the SW_
INTERRUPT register to enable a given
interrupt via software.

alt_vic_sw_interrupt_clear() Clears the corresponding bit in the SW_
INTERRUPT register to disable a given
interrupt via software.

alt_vic_sw_interrupt_

status()

Reads the status of the SW_INTERRUPT
register for a given interrupt.

alt_vic_irq_set_level() Sets the interrupt level for a given
interrupt.

alt_vic_sw_interrupt_set()
Prototype: int alt_vic_sw_interrupt_set(alt_u32 ic_id, alt_u32 irq)

Thread-safe: No

Available
from ISR:

No

Include: altera_vic_irq.h, altera_vic_regs.h

Parameters: ic_id—the interrupt controller identification number as
defined in system.h

irq—the interrupt value as defined in system.h

Returns: Returns zero if successful; otherwise non-zero for one or
more of the following reasons:

The value in ic_id is invalid

The value in irq is invalid

Description: Triggers a single software interrupt

28-14 alt_vic_sw_interrupt_set()
UG-01085

2014.24.07

Altera Corporation Vectored Interrupt Controller Core

Send Feedback

http://www.altera.com/literature/hb/nios2/n2sw_nii52010.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Vectored%20Interrupt%20Controller%20Core%20(UG-01085%202014.24.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


alt_vic_sw_interrupt_clear()
Prototype: int alt_vic_sw_interrupt_clear(alt_u32 ic_id, alt_u32 irq)

Thread-safe: No

Available
from ISR:

Yes; if interrupt preemption is enabled, disable global
interrupts before calling this routine.

Include: altera_vic_irq.h, altera_vic_regs.h

Parameters: ic_id—the interrupt controller identification number as
defined in system.h

irq—the interrupt value as defined in system.h

Returns: Returns zero if successful; otherwise non-zero for one or
more of the following reasons:

The value in ic_id is invalid

The value in irq is invalid

Description: Clears a single software interrupt

alt_vic_sw_interrupt_status()
Prototype: alt_u32 alt_vic_sw_interrupt_status(alt_u32 ic_id, alt_u32

irq)

Thread-safe: No

Available
from ISR:

Yes; if interrupt preemption is enabled, disable global
interrupts before calling this routine.

Include: altera_vic_irq.h, altera_vic_regs.h

Parameters: ic_id—the interrupt controller identification number as
defined in system.h

irq—the interrupt value as defined in system.h

Returns: Returns non-zero if the corresponding software trigger
interrupt is active; otherwise zero for one or more of the
following reasons:

The corresponding software trigger interrupt is disabled

The value in ic_id is invalid

The value in irq is invalid

Description: Checks the software interrupt status for a single interrupt

alt_vic_irq_set_level()
Prototype: int alt_vic_irq_set_level(alt_u32 ic_id, alt_u32 irq, alt_u32

level)

UG-01085
2014.24.07 alt_vic_sw_interrupt_clear() 28-15

Vectored Interrupt Controller Core Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Vectored%20Interrupt%20Controller%20Core%20(UG-01085%202014.24.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Thread-safe: No

Available
from ISR:

No

Include: altera_vic_irq.h, altera_vic_regs.h

Parameters: ic_id—the interrupt controller identification number as
defined in system.h

irq—the interrupt value as defined in system.h

level—the interrupt level to set

Returns: Returns zero if successful; otherwise non-zero for one or
more of the following reasons:

The value in ic_id is invalid

The value in irq is invalid

The value in level is invalid

Description: Sets the interrupt level for a single interrupt.

Altera recommends setting the interrupt level only to zero to
disable the interrupt or to the original value specified in your
BSP. Writing any other value could violate the overlapping
register set, priority level, and other design rules. Refer to the
VIC BSP Design Rules for Altera Hal Implementation
section for more information.

Run-time Initialization
During system initialization, software configures the each VIC instance's control registers using settings
specified in the BSP. The RIL, RRS, and RNMI fields are written into the interrupt configuration register
of each interrupt port in each VIC. All interrupts are disabled until other software registers a handler
using the alt_ic_isr_register() API.

Board Support Package
The BSP you generate for your Nios II system provides access to the hardware in your system, including
the VIC. The VIC driver includes scripts that the BSP generator calls to get default interrupt settings and
to validate settings during BSP generation. The Nios II BSP Editor provides a mechanism to edit these
settings and generate a BSP for your SOPC Builder design.

The generator produces a vector table file for each VIC in the system, named
altera_<name>_vector_tbl.S. The vector table's source path is added to the BSP Makefile for compilation
along with other VIC driver source code. Its contents are based on the BSP settings for each VIC's
interrupt ports.

The VIC does not support runtime stack checking feature (hal.enable_runtime_stack_checking) in the
BSP setting.

28-16 Run-time Initialization
UG-01085

2014.24.07

Altera Corporation Vectored Interrupt Controller Core

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Vectored%20Interrupt%20Controller%20Core%20(UG-01085%202014.24.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


VIC BSP Settings

The VIC driver scripts provide settings to the BSP. The number and naming of these settings depends on
your hardware system's configuration, specifically, the number of optional shadow register sets in the
Nios II processor, the number of VIC controllers in the system, and the number of interrupt ports each
VIC has.

Certain settings apply to all VIC instances in the system, while others apply to a specific VIC instance.
Settings that apply to each interrupt port apply only to the specified interrupt port number on that VIC
instance.

The remainder of this section lists details and descriptions of each VIC BSP setting.

altera_vic_driver.enable_preemption
Identifier: ALTERA_VIC_DRIVER_ISR_PREEMPTION_ENABLED

Type: BooleanDefineOnly

Default
value:

1 when all components connected to the VICs support
preemption. 0 when any of the connected components don’t
support preemption.

Destina‐
tion file:

system.h

Descrip‐
tion:

Enables global interrupt preemption (nesting). When enabled
(set to 1), the macro ALTERA_VIC_DRIVER_ISR_PREEMPTION_
ENABLED is defined in system.h.

Two types of ISR preemption are available. This setting must be
enabled along with other settings to enable specific types of
preemption.

All preemption settings are dependant on whether the device
drivers in your BSP support interrupt preemption. For more
information about preemption, refer to the Exception Handling
chapter of the Nios II Software Developer’s Handbook.

Occurs: Once per VIC

altera_vic_driver.enable_preemption_into_new_register_set
Identifier: ALTERA_VIC_DRIVER_PREEMPTION_INTO_NEW_

REGISTER_SET_ENABLED

Type: BooleanDefineOnly

Default
value:

0

Destina‐
tion file:

system.h

UG-01085
2014.24.07 altera_vic_driver.enable_preemption 28-17

Vectored Interrupt Controller Core Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Vectored%20Interrupt%20Controller%20Core%20(UG-01085%202014.24.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Descrip‐
tion:

Enables interrupt preemption (nesting) if a higher priority
interrupt is asserted while a lower priority ISR is executing, and
that higher priority interrupt uses a different register set than the
interrupt currently being serviced.

When this setting is enabled (set to 1), the macro ALTERA_VIC_
DRIVER_ISR_PREEMPTION_INTO_NEW_REGISTER_SET_ENABLED is
defined in system.h and the Nios II config.ANI (automatic
nested interrupts) bit is asserted during system software initiali‐
zation.

Use this setting to limit interrupt preemption to higher priority
(RIL) interrupts that use a different register set than a lower
priority interrupt that might be executing. This setting allows
you to support some preemption while maintaining the lowest
possible interrupt response time. However, this setting does not
allow an interrupt at a higher priority (RIL) to preempt a lower
priority interrupt if the higher priority interrupt is assigned to
the same register set as the lower priority interrupt.

Occurs: Once per VIC

altera_vic_driver.enable_preemption_rs_<n>
Identifier: ALTERA_VIC_DRIVER_ENABLE_PREEMPTION_RS_<n>

Type: Boolean

Default
value:

0

Destina‐
tion file:

system.h

28-18 altera_vic_driver.enable_preemption_rs_<n>
UG-01085

2014.24.07

Altera Corporation Vectored Interrupt Controller Core

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Vectored%20Interrupt%20Controller%20Core%20(UG-01085%202014.24.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Descrip‐
tion:

Enables interrupt preemption (nesting) if a higher priority
interrupt is asserted while a lower priority ISR is executing, for
all interrupts that target the specified register set number.

When this setting is enabled (set to 1), the vector table for each
VIC utilizes a special interrupt funnel that manages preemption.
All interrupts on all VIC instances assigned to that register set
then use this funnel.

When a higher priority interrupt preempts a lower priority
interrupt running in the same register set, the interrupt funnel
detects this condition and saves the processor registers to the
stack before calling the higher priority ISR. The funnel code
restores registers and allows the lower priority ISR to continue
running once the higher priority ISR completes.

Because this funnel contains additional overhead, enabling this
setting increases interrupt response time substantially for all
interrupts that target a register set where this type of preemption
is enabled.

Use this setting if you must guarantee that a higher priority
interrupt preempts a lower priority interrupt, and you assigned
multiple interrupts at different priorities to the same Nios II
shadow register set.

Occurs: Per register set; <n> refers to the register set number.

altera_vic_driver.linker_section
Identifier: ALTERA_VIC_DRIVER_LINKER_SECTION

Type: UnquotedString

Default
value:

.text

Destina‐
tion file:

system.h

UG-01085
2014.24.07 altera_vic_driver.linker_section 28-19

Vectored Interrupt Controller Core Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Vectored%20Interrupt%20Controller%20Core%20(UG-01085%202014.24.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Descrip‐
tion:

Specifies the linker section that each VIC's generated vector table
and each interrupt funnel link to. The memory device that the
specified linker section is mapped to must be connected to both
the Nios II instruction and data masters in your SOPC Builder
system.

Use this setting to link performance-critical code into faster
memory. For example, if your system's code is in DRAM and
you have an on-chip or tightly-coupled memory interface for
interrupt handling code, assigning the VIC driver linker section
to a section in that memory improves interrupt response time.

For more information about linker sections and the Nios II BSP
Editor, refer to the Getting Started with the Graphical User
Interface chapter of the Nios II Software Developer’s Handbook.

Occurs: Once per VIC

altera_vic_driver.<name>.vec_size
Identifier: <name>_VEC_SIZE

Type: DecimalNumber

Default
value:

16

Destina‐
tion file:

system.h

Descrip‐
tion:

Specifies the number of bytes in each vector table entry. Legal
values are 16, 32, 64, 128, 256, and 512.

The generated VIC vector tables in the BSP require a minimum
of 16 bytes per entry.

If you intend to write your own vector table or locate your ISR at
the vector address, you can use a larger size.

The vector table's total size is equal to the number of interrupt
ports on the VIC instance multiplied by the vector table entry
size specified in this setting.

Occurs: Per instance; <name> refers to the component name you assign
in SOPC Builder.

altera_vic_driver.<name>.irq<n>_rrs
Identifier: ALTERA_VIC_DRIVER_<name>_IRQ<n>_RRS

Type: DecimalNumber

Default
value:

Refer to the Default Settings for RRS and RIL section.

28-20 altera_vic_driver.<name>.vec_size
UG-01085

2014.24.07

Altera Corporation Vectored Interrupt Controller Core

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Vectored%20Interrupt%20Controller%20Core%20(UG-01085%202014.24.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Destina‐
tion file:

system.h

Descrip‐
tion:

Specifies the RRS for the interrupt connected to the
corresponding port. Legal values are 1 to the number of shadow
register sets defined for the processor.

Occurs: Per IRQ per instance; <name> refers to the VIC’s name and <n>
refers to the IRQ number that you assign in SOPC Builder. Refer
to SOPC Builder to determine which IRQ numbers correspond
to which components in your design.

altera_vic_driver.<name>.irq<n>_ril
Identifier: ALTERA_VIC_DRIVER_<name>_IRQ<n>_RIL

Type: DecimalNumber

Default
value:

Refer to Default Settings for RRS and RIL section.

Destina‐
tion file:

system.h

Descrip‐
tion:

Specifies the RIL for the interrupt connected to the
corresponding port. Legal values are 0 to 2RIL width -1.

Occurs: Per IRQ per instance; <name> refers to the VIC’s name and <n>
refers to the IRQ number that you assign in SOPC Builder. Refer
to SOPC Builder to determine which IRQ numbers correspond
to which components in your design.

altera_vic_driver.<name>.irq<n>_rnmi
Identifier: ALTERA_VIC_DRIVER_<name>_IRQ<n>_RNMI

Type: Boolean

Default
value:

0

Destina‐
tion file:

system.h

Descrip‐
tion:

Specifies whether the interrupt port is a maskable or non-
maskable interrupt (NMI). Legal values are 0 and 1. When set to
0, the port is maskable. NMIs cannot be disabled in hardware
and there are several restrictions imposed for the RIL and RRS
settings associated with any interrupt with NNI enabled.

Occurs: Per IRQ per instance; <name> refers to the VIC’s name and <n>
refers to the IRQ number that you assign in SOPC Builder. Refer
to SOPC Builder to determine which IRQ numbers correspond
to which components in your design.

UG-01085
2014.24.07 altera_vic_driver.<name>.irq<n>_ril 28-21

Vectored Interrupt Controller Core Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Vectored%20Interrupt%20Controller%20Core%20(UG-01085%202014.24.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Default Settings for RRS and RIL
The default assignment of RRS and RIL values for each interrupt assumes interrupt port 0 on the VIC
instance attached to your processor is the highest priority interrupt, with successively lower priorities as
the interrupt port number increases. Interrupt ports on other VIC instances connected through the first
VIC's daisy chain interface are assigned successively lower priorities.

To make effective use of the VIC interrupt setting defaults, assign your highest priority interrupts to low
interrupt port numbers on the VIC closest to the processor. Assign lower priority interrupts and
interrupts that do not need exclusive access to a shadow register set, to higher interrupt port numbers, or
to another daisy-chained VIC.

The following steps describe the algorithm for default RIL assignment:

1. The formula 2RIL width -1 is used to calculate the maximum RIL value.
2. interrupt port 0 on the VIC connected to the processor is assigned the highest possible RIL.
3. The RIL value is decremented and assigned to each subsequent interrupt port in succession until the

RIL value is 1.
4. The RILs for all remaining interrupt ports on all remaining VICs in the chain are assigned 1.

The following steps describe the algorithm for default RRS assignment:
5. The highest register set number is assigned to the interrupt with the highest priority.
6. Each subsequent interrupt is assigned using the same method as the default RIL assignment.

For example, consider a system with two VICs, VIC0 and VIC1. Each VIC has an RIL width of 3, and
each has 4 interrupt ports. VIC0 is connected to the processor and VIC1 to the daisy chain interface on
VIC0. The processor has 3 shadow register sets.

Table 28-13: Default RRS and RIL Assignment Example

VIC IRQ RRS RIL

0 0 3 7
0 1 2 6
0 2 1 5
0 3 1 4
1 0 1 3
1 1 1 2
1 2 1 1
1 3 1 1

VIC BSP Design Rules for Altera Hal Implementation
The VIC BSP settings allow for a large number of combinations. This list describes some basic design
rules to follow to ensure a functional BSP:

28-22 Default Settings for RRS and RIL
UG-01085

2014.24.07

Altera Corporation Vectored Interrupt Controller Core

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Vectored%20Interrupt%20Controller%20Core%20(UG-01085%202014.24.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


• Each component’s interrupt interface in your system should only be connected to one VIC instance
per processor.

• The number of shadow register sets for the processor must be greater than zero.
• RRS values must always be greater than zero and less than or equal to the number of shadow

register sets.
• RIL values must always be greater than zero and less than or equal to the maximum RIL.
• All RILs assigned to a register set must be sequential to avoid a higher priority interrupt overwriting

contents of a register set being used by a lower priority interrupt.

Note: The Nios II BSP Editor uses the term “overlap condition” to refer to nonsequential RIL
assignments.

• NMIs cannot share register sets with maskable interrupts.
• NMIs must have RILs set to a number equal to or greater than the highest RIL of any

maskable interrupt. When equal, the NMIs must have a lower logical interrupt port number
than any maskable interrupt.

• The vector table and funnel code section's memory device must connect to a data master and
an instruction master.

• NMIs must use funnels with preemption disabled.
• When global preemption is disabled, enabling preemption into a new register set or per-

register-set preemption might produce unpredictable results. Be sure that all interrupt
service routines (ISR) used by the register set support preemption.

• Enabling register set preemption for register sets with peripherals that don't support
preemption might result in unpredictable behavior.

RTOS Considerations
BSPs configured to use a real time operating system (RTOS) might have additional software linked into
the HAL interrupt funnel code using the ALT_OS_INT_ENTER and ALT_OS_INT_EXIT macros. The exact
nature and overhead of this code is RTOS-specific. Additional code adds to interrupt response and
recovery time. Refer to your RTOS documentation to determine if such code is necessary.

Document Revision History

Table 28-14: Revision History

Date and
Document

Version

Changes Made Summary of Changes

December
2013
v13.1.0

Updated the INT_ENABLE register description. —

December
2010

v10.1.0

Added a note to to state that the VIC does not support the
runtime stack checking feature in BSP setting.

Removed the “Device Support”, “Instantiating the Core in
SOPC Builder”, and “Referenced Documents” sections.

—

July 2010

v10.0.0

No change from previous release. —

UG-01085
2014.24.07 RTOS Considerations 28-23

Vectored Interrupt Controller Core Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Vectored%20Interrupt%20Controller%20Core%20(UG-01085%202014.24.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Date and
Document

Version

Changes Made Summary of Changes

November
2009

v9.1.0

Initial release. —

28-24 Document Revision History
UG-01085

2014.24.07

Altera Corporation Vectored Interrupt Controller Core

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Vectored%20Interrupt%20Controller%20Core%20(UG-01085%202014.24.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Avalon-ST JTAG Interface Core 29
2014.24.07

UG-01085 Subscribe Send Feedback

Functional Description
The figure below shows a block diagram of the Avalon-ST JTAG Interface core in a typical system
configuration.

Figure 29-1: System with an Avalon-ST JTAG Interface Core

Avalon-ST
Source

Avalon-ST
Sink

Avalon-ST
JTAG Interface

Core

System
Clock

JTAG
Clock

GA
TJ

aF tcennocretnI 
metsy

S
b

cir

Rest of the 
System

data_out

data_in

JTAG
Host

(System
Console)

Altera FPGA

resetrequest

Interfaces

Table 29-1: Properties of Avalon-ST Interfaces

Feature Property

Backpressure Only supported on the sink interface.

Data Width Data width = 8 bits; Bits per symbol = 8.

Channel Not supported.

Error Not used.

Packet Not supported.

For more information about Avalon-ST interfaces, refer to the Avalon Interface Specifications.

© 2014 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are
trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as
trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance
of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information,
product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
specifications before relying on any published information and before placing orders for products or services.

ISO
9001:2008
Registered

www.altera.com
101 Innovation Drive, San Jose, CA 95134

https://www.altera.com/servlets/subscriptions/alert?id=UG-01085
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(UG-01085%202014.24.07)%20Avalon-ST%20JTAG%20Interface%20Core&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html


Core Behavior
The Avalon-ST JTAG Interface core is supported when used with the System Console; a Tcl console that
provides access to IP cores instantiated in your Qsys system.

The Avalon-ST JTAG Interface core supports two sets of operations:

• Bytestream
• JTAG debug

Bytestream Operation

The bytestream operation uses the System Console’s bytestream service. This operation allows you to
configure the core to send and receive a stream of bytes through the Avalon-ST interfaces.

Table 29-2: Bytestream Commands

Command Description Operation

bytestream_send Sends a stream of bytes down to the
Avalon-ST source interface.

The stream of byte that appears
on the Avalon-ST source interface
is in the same order as sent from
the JTAG host.

bytestream_

receive

Receives a stream of bytes from the
Avalon-ST sink interface.

The stream of bytes that appears
on the JTAG host is in the same
order as sent from the Avalon-ST
sink interface.

JTAG Debug Operation

The JTAG debug operation uses the System Console’s JTAG debug service. This operation allows you to
configure the core to to debug the clock and reset signals, issue a reset, and verify the signal integrity of
the JTAG chain.

Table 29-3: JTAG Debug Commands

Command Description Operation

jtag_debug_loop Verifies the signal integrity of the
JTAG chain by making sure the
data sent are the same as the data
received.

The bytes received from the
JTAG interface are looped-
back through an internal
register.

jtag_debug_reset_

system

Issues a reset to the external system
with its reset signal connected to
the resetrequest output signal.

The output signal, resetre-
quest, is asserted high for at
least one second.

jtag_debug_sample_

clock

Samples the clock (clk) signal to
verify that the clock is toggling.

The input clock signal is
sampled once.

jtag_debug_sample_

reset

Samples the reset (reset_n) signal
to verify that the signal is not tied
to ground.

The input reset signal is
sampled once.

jtag_debug_sense_clock Senses the clock signal to verify that
the clock is toggling.

An internal register is set on
the clock’s rising edge if the
clock is toggling.

29-2 Core Behavior
UG-01085

2014.24.07

Altera Corporation Avalon-ST JTAG Interface Core

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Avalon-ST%20JTAG%20Interface%20Core%20(UG-01085%202014.24.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


For more information about the System Console and its commands, refer to Analyzing and Debugging
Designs with the System Console in volume 3 of the Quartus II Handbook.

Parameters

Table 29-4: Configurable Parameters

Parameter Legal Values Default Value Description

Use PLI Simulation
Mode

— — Turn on this parameter to enable PLI
simulation mode. This PLI simulation mode
enables you to send and receive bytestream
commands, through System Console, while
the system is being simulated in ModelSim®.

PLI Simulation
Port

1–65535 50000 Specifies the PLI simulation port number.

Document Revision History

Table 29-5: Document Revision History

Date and
Document

Version

Changes Made Summary of Changes

July 2014

v14.0.0

-Removed mention of SOPC Builder, updated to Qsys Maintenance Release

December
2010

v10.1.0

Updated SOPC Builder System with an Avalon-ST
JTAG Interface Core diagram.

Revised the operation description.

Added Parameters section.

Removed “Device Support”, “Instantiating the Core in
SOPC Builder”, and “Referenced Documents” sections.

—

July 2010

v10.0.0

No change from previous release. —

November
2009

v9.1.0

No change from previous release. —

March 2009

v9.0.0

No change from previous release. —

UG-01085
2014.24.07 Parameters 29-3

Avalon-ST JTAG Interface Core Altera Corporation

Send Feedback

http://www.altera.com/literature/hb/qts/qts_qii53028.pdf
http://www.altera.com/literature/hb/qts/qts_qii53028.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Avalon-ST%20JTAG%20Interface%20Core%20(UG-01085%202014.24.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Date and
Document

Version

Changes Made Summary of Changes

November
2008

v8.1.0

Changed to 8-1/2 x 11 page size. No change to content. —

May 2008

v8.0.0

Initial release. —

29-4 Document Revision History
UG-01085

2014.24.07

Altera Corporation Avalon-ST JTAG Interface Core

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Avalon-ST%20JTAG%20Interface%20Core%20(UG-01085%202014.24.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


System ID Core 30
2014.24.07

UG-01085 Subscribe Send Feedback

Core Overview
The system ID core with Avalon® interface is a simple read-only device that provides Qsys systems with a
unique identifier. Nios® II processor systems use the system ID core to verify that an executable program
was compiled targeting the actual hardware image configured in the target FPGA. If the expected ID in
the executable does not match the system ID core in the FPGA, it is possible that the software will not
execute correctly.

Functional Description
The system ID core provides a read-only Avalon Memory-Mapped (Avalon-MM) slave interface. This
interface has two 32-bit registers, as shown in the table below. The value of each register is determined at
system generation time, and always returns a constant value.

Table 30-1: System ID Core Register Map

Offs
et

Register
Name

R/W Description

0 id R A unique 32-bit value that is based on the contents of the Qsys system.
The id is similar to a check-sum value; Qsys systems with different
components, different configuration options, or both, produce
different id values.

1 timestamp R A unique 32-bit value that is based on the system generation time.
The value is equivalent to the number of seconds after Jan. 1, 1970.

There are two basic ways to use the system ID core:

• Verify the system ID before downloading new software to a system. This method is used by software
development tools, such as the Nios II integrated development environment (IDE). There is little point
in downloading a program to a target hardware system, if the program is compiled for different
hardware. Therefore, the Nios II IDE checks that the system ID core in hardware matches the expected
system ID of the software before downloading a program to run or debug.

• Check system ID after reset. If a program is running on hardware other than the expected Qsys system,
the program may fail to function altogether. If the program does not crash, it can behave erroneously
in subtle ways that are difficult to debug. To protect against this case, a program can compare the
expected system ID against the system ID core, and report an error if they do not match.

© 2014 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are
trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as
trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance
of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information,
product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
specifications before relying on any published information and before placing orders for products or services.

ISO
9001:2008
Registered

www.altera.com
101 Innovation Drive, San Jose, CA 95134

https://www.altera.com/servlets/subscriptions/alert?id=UG-01085
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(UG-01085%202014.24.07)%20System%20ID%20Core&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html


Configuration
The id and timestamp register values are determined at system generation time based on the
configuration of the Qsys system and the current time. You can add only one system ID core to an Qsys
system, and its name is always sysid.

After system generation, you can examine the values stored in the id and timestamp registers by opening
the MegaWizard™ interface for the System ID core. Hovering the mouse over the component in Qsys also
displays a tool-tip showing the values.

Since a unique timestamp value is added to the System ID HDL file each time you generate the Qsys
system, the Quartus II software recompiles the entire system if you have added the system as a design
partition.

Software Programming Model
This section describes the software programming model for the system ID core. For Nios II processor
users, Altera provides the HAL system library header file that defines the System ID core registers.

The System ID core comes with the following software files. These files provide low-level access to the
hardware. Application developers should not modify these files.

• alt_avalon_sysid_regs.h—Defines the interface to the hardware registers.
• alt_avalon_sysid.c, alt_avalon_sysid.h—Header and source files defining the hardware access functions.

Altera provides one access routine, alt_avalon_sysid_test(), that returns a value indicating
whether the system ID expected by software matches the system ID core.

alt_avalon_sysid_test()
Prototype: alt_32 alt_avalon_sysid_test(void)

Thread-safe: No.

Available
from ISR:

Yes.

Include: <altera_avalon_sysid.h>

Description: Returns 0 if the values stored in the hardware registers match the values expected
by software. Returns 1 if the hardware timestamp is greater than the software
timestamp. Returns -1 if the software timestamp is greater than the hardware
timestamp.

30-2 Configuration
UG-01085

2014.24.07

Altera Corporation System ID Core

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20System%20ID%20Core%20(UG-01085%202014.24.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Document Revision History

Table 30-2: Document Revision History

Date and
Document

Version

Changes Made Summary of Changes

July 2014

v14.0.0

-Removed mention of SOPC Builder, updated to Qsys Maintenance Release

December
2010

v10.1.0

Removed the “Device Support”, “Instantiating the Core in
SOPC Builder”, and “Referenced Documents” sections.

—

July 2010

v10.0.0

No change from previous release. —

November
2009

v9.1.0

Added description to the Instantiating the Core in SOPC
Builder section.

The SOPC Builder
works with
incremental compila‐
tion.

March 2009

v9.0.0

No change from previous release. —

November
2008

v8.1.0

Changed to 8-1/2 x 11 page size. No change to content. —

May 2008

v8.0.0

No change from previous release. —

UG-01085
2014.24.07 Document Revision History 30-3

System ID Core Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20System%20ID%20Core%20(UG-01085%202014.24.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Performance Counter Core 31
2014.24.07

UG-01085 Subscribe Send Feedback

Core Overview
The performance counter core with Avalon® interface enables relatively unobtrusive, real-time profiling
of software programs. With the performance counter, you can accurately measure execution time taken
by multiple sections of code. You need only add a single instruction at the beginning and end of each
section to be measured.

The main benefit of using the performance counter core is the accuracy of the profiling results. Alterna‐
tives include the following approaches:

• GNU profiler, gprof—gprof provides broad low-precision timing information about the entire
software system. It uses a substantial amount of RAM, and degrades the real-time performance. For
many embedded applications, gprof distorts real-time behavior too much to be useful.

• Interval timer peripheral—The interval timer is less intrusive than gprof. It can provide good results
for narrowly targeted sections of code.

The performance counter core is unobtrusive, requiring only a single instruction to start and stop
profiling, and no RAM. It is appropriate for high-precision measurements of narrowly targeted
sections of code.

For further discussion of all three profiling methods, refer to AN 391: Profiling Nios II Systems.

The core is designed for use in Avalon-based processor systems, such as a Nios® II processor system.
Altera® device drivers enable the Nios II processor to use the performance counters.

Functional Description
The performance counter core is a set of counters which track clock cycles, timing multiple sections of
your software. You can start and stop these counters in your software, individually or as a group. You can
read cycle counts from hardware registers.

The core contains two counters for every section:

• Time: A 64-bit clock cycle counter.
• Events: A 32-bit event counter.

Section Counters
Each 64-bit time counter records the aggregate number of clock cycles spent in a section of code. The 32-
bit event counter records the number of times the section executes.

© 2014 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are
trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as
trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance
of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information,
product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
specifications before relying on any published information and before placing orders for products or services.

ISO
9001:2008
Registered

www.altera.com
101 Innovation Drive, San Jose, CA 95134

https://www.altera.com/servlets/subscriptions/alert?id=UG-01085
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(UG-01085%202014.24.07)%20Performance%20Counter%20Core&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
http://www.altera.com/literature/an/an391.pdf
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html


The performance counter core can have up to seven section counters.

Global Counter
The global counter controls all section counters. The section counters are enabled only when the global
counter is running.

The 64-bit global clock cycle counter tracks the aggregate time for which the counters were enabled. The
32-bit global event counter tracks the number of global events, that is, the number of times the perform‐
ance counter core has been enabled.

Register Map
The performance counter core has an Avalon Memory-Mapped (Avalon-MM) slave interface that
provides access to memory-mapped registers. Reading from the registers retrieves the current times and
event counts. Writing to the registers starts, stops, and resets the counters.

Table 31-1: Performance Counter Core Register Map

Offset Register Name

Bit Description

Read Write

31 ... 0 31 ... 1 0

0 T[0]lo global clock cycle counter [31: 0] (1) 0 =
STOP

1 =
RESET

1 T[0]hi global clock cycle counter [63:32] (1) 0 =
START

2 Ev[0] global event counter (1) (1)
3 — (1) (1) (1)
4 T[1]lo section 1 clock cycle counter [31:0] (1) 0 =

STOP
5 T[1]hi section 1 clock cycle counter [63:32] (1) 0 =

START
6 Ev[1] section 1 event counter (1) (1)
7 — (1) (1) (1)
8 T[2]lo section 2 clock cycle counter [31:0] (1) 0 =

STOP
9 T[2]hi section 2 clock cycle counter [63:32] (1) 0 =

START
10 Ev[2] section 2 event counter (1) (1)
11 — (1) (1) (1)

31-2 Global Counter
UG-01085

2014.24.07

Altera Corporation Performance Counter Core

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Performance%20Counter%20Core%20(UG-01085%202014.24.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Offset Register Name

Bit Description

Read Write

31 ... 0 31 ... 1 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

4n + 0 T[n]lo section n clock cycle counter [31:0] (1) 0 =
STOP

4n + 1 T[n]hi section n clock cycle counter [63:32] (1) 0 =
START

4n + 2 Ev[n] section n event counter (1) (1)
4n + 3 — (1) (1) (1)
Table 31-1 :

1. Reserved. Read values are undefined. When writing, set reserved bits to zero.

System Reset
After a system reset, the performance counter core is stopped and disabled, and all counters are set to
zero.

Configuration
The following sections list the available options in the MegaWizard™ interface.

Define Counters
Choose the number of section counters you want to generate by selecting from the Number of
simultaneously-measured sections list. The performance counter core may have up to seven sections. If
you require more that seven sections, you can instantiate multiple performance counter cores.

Multiple Clock Domain Considerations
If your Qsys system uses multiple clocks, place the performance counter core in the same clock domain as
the CPU. Otherwise, it is not possible to convert cycle counts to seconds correctly.

Hardware Simulation Considerations
You can use this core in simulation with no special considerations.

Software Programming Model
The following sections describe the software programming model for the performance counter core.

UG-01085
2014.24.07 System Reset 31-3

Performance Counter Core Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Performance%20Counter%20Core%20(UG-01085%202014.24.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Software Files
Altera provides the following software files for Nios II systems. These files define the low-level access to
the hardware and provide control and reporting functions. Do not modify these files.

• altera_avalon_performance_counter.h, altera_avalon_performance_counter.c—The header and source code
for the functions and macros needed to control the performance counter core and retrieve raw results.

• perf_print_formatted_report.c—The source code for simple profile reporting.

Using the Performance Counter
In a Nios II system, you can control the performance counter core with a set of highly efficient C macros,
and extract the results with C functions.

API Summary

The Nios II application program interface (API) for the performance counter core consists of functions,
macros and constants.

Table 31-2: Performance Counter Macros and Functions

Name Summary

PERF_RESET() Stops and disables all counters, resetting them to 0.
PERF_START_MEASURING() Starts the global counter and enables section counters.
PERF_STOP_MEASURING() Stops the global counter and disables section counters.
PERF_BEGIN() Starts timing a code section.
PERF_END() Stops timing a code section.
perf_print_formatted_report() Sends a formatted summary of the profiling results to

stdout.
perf_get_total_time() Returns the aggregate global profiling time in clock

cycles.
perf_get_section_time() Returns the aggregate time for one section in clock

cycles.
perf_get_num_starts() Returns the number of counter events.
alt_get_cpu_freq() Returns the CPU frequency in Hz.

For a complete description of each macro and function, see the Performance counter API section.

Hardware Constants

You can get the performance counter hardware parameters from constants defined in system.h. The
constant names are based on the performance counter instance name, specified on the System Contents
tab in Qsys.

Table 31-3: Performance Counter Constants

Name (1) Meaning

PERFORMANCE_COUNTER_BASE Base address of core

31-4 Software Files
UG-01085

2014.24.07

Altera Corporation Performance Counter Core

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Performance%20Counter%20Core%20(UG-01085%202014.24.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Name (1) Meaning

PERFORMANCE_COUNTER_SPAN Number of hardware registers
PERFORMANCE_COUNTER_HOW_
MANY_SECTIONS

Number of section counters

Table 31-3 :

1. Example based on instance name performance_counter.

Startup

Before using the performance counter core, invoke PERF_RESET to stop, disable and zero all counters.

Global Counter Usage

Use the global counter to enable and disable the entire performance counter core. For example, you might
choose to leave profiling disabled until your software has completed its initialization.

Section Counter Usage

To measure a section in your code, surround it with the macros PERF_BEGIN() and PERF_END(). These
macros consist of a single write to the performance counter core.

You can simultaneously measure as many code sections as you like, up to the number specified in Qsys.
See the Define Counters section for details. You can start and stop counters individually, or as a group.

Typically, you assign one counter to each section of code you intend to profile. However, in some
situations you may wish to group several sections of code in a single section counter. As an example, to
measure general interrupt overhead, you can measure all interrupt service routines (ISRs) with one
counter.

To avoid confusion, assign a mnemonic symbol for each section number.

Viewing Counter Values

Library routines allow you to retrieve and analyze the results. Use perf_print_formatted_report() to
list the results to stdout, as shown below.

Table 31-4: Example 1:

perf_print_formatted_report(

     (void *)PERFORMANCE_COUNTER_BASE, // Peripheral's HW base address

     alt_get_cpu_freq(),               // defined in "system.h"

     3,                                // How many sections to print

     "1st checksum_test",              // Display-names of sections

     "pc_overhead",

     "ts_overhead");

The example below creates a table similar to this result.

UG-01085
2014.24.07 Using the Performance Counter 31-5

Performance Counter Core Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Performance%20Counter%20Core%20(UG-01085%202014.24.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Table 31-5: Example 2:

--Performance Counter Report--

Total Time: 2.07711 seconds (103855534 clock-cycles)

+-----------------+--------+-----------+---------------+-----------+

| Section         |    %   | Time (sec)| Time (clocks) |Occurrences|

+-----------------+--------+-----------+---------------+-----------+

|1st checksum_test|     50 |   1.03800 |      51899750 |         1 |

+-----------------+--------+-----------+---------------+-----------+

| pc_overhead     |1.73e-05|   0.00000 |            18 |         1 |

+-----------------+--------+-----------+---------------+-----------+

| ts_overhead     |4.24e-05|   0.00000 |            44 |         1 |

+-----------------+--------+-----------+---------------+-----------+

For full documentation of perf_print_formatted_report(), see the Performance and Counter API
section.

Interrupt Behavior
The performance counter core does not generate interrupts.

You can start and stop performance counters, and read raw performance results, in an interrupt service
routine (ISR). Do not call the perf_print_formatted_report() function from an ISR.

If an interrupt occurs during the measurement of a section of code, the time taken by the CPU to process
the interrupt and return to the section is added to the measurement time. The same applies to context
switches in a multithreaded environment. Your software must take appropriate measures to avoid or
handle these situations.

Performance Counter API
This section describes the application programming interface (API) for the performance counter core.

For Nios II processor users, Altera provides routines to access the performance counter core hardware.
These functions are specific to the performance counter core and directly manipulate low level hardware.
The performance counter core cannot be accessed via the HAL API or the ANSI C standard library.

PERF_RESET()
Prototype: PERF_RESET(p)

Thread-safe: Yes.

Available
from ISR:

Yes.

Include: <altera_avalon_performance_counter.h>

Parameters: p—performance counter core base address.

31-6 Interrupt Behavior
UG-01085

2014.24.07

Altera Corporation Performance Counter Core

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Performance%20Counter%20Core%20(UG-01085%202014.24.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Returns: —

Description: Macro PERF_RESET() stops and disables all counters, resetting them to 0.

PERF_START_MEASURING()
Prototype: PERF_START_MEASURING(p)

Thread-safe: Yes.

Available
from ISR:

Yes.

Include: <altera_avalon_performance_counter.h>

Parameters: p—performance counter core base address.

Returns: —

Description: Macro PERF_START_MEASURING() starts the global counter, enabling the
performance counter core. The behavior of individual section counters is
controlled by PERF_BEGIN() and PERF_END(). PERF_START_MEASURING()
defines the start of a global event, and increments the global event counter. This
macro is a single write to the performance counter core.

PERF_STOP_MEASURING()
Prototype: PERF_STOP_MEASURING(p)

Thread-safe: Yes.

Available
from ISR:

Yes.

Include: <altera_avalon_performance_counter.h>

Parameters: p—performance counter core base address.

Returns: —

Description: Macro PERF_STOP_MEASURING() stops the global counter, disabling the perform‐
ance counter core. This macro is a single write to the performance counter core.

PERF_BEGIN()
Prototype: PERF_BEGIN(p,n)

Thread-safe: Yes.

Available
from ISR:

Yes.

Include: <altera_avalon_performance_counter.h>

UG-01085
2014.24.07 PERF_START_MEASURING() 31-7

Performance Counter Core Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Performance%20Counter%20Core%20(UG-01085%202014.24.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Parameters: p—performance counter core base address.

n—counter section number. Section counter numbers start at 1. Do not refer to
counter 0 in this macro.

Returns: —

Description: Macro PERF_BEGIN() starts the timer for a code section, defining the beginning
of a section event, and incrementing the section event counter. If you
subsequently use PERF_STOP_MEASURING() and PERF_START_MEASURING() to
disable and re-enable the core, the section counter will resume. This macro is a
single write to the performance counter core.

PERF_END()
Prototype: PERF_END(p,n)

Thread-safe: Yes.

Available
from ISR:

Yes.

Include: <altera_avalon_performance_counter.h>

Parameters: p—performance counter core base address.

n—counter section number. Section counter numbers start at 1. Do not refer to
counter 0 in this macro.

Returns: —

Description: Macro PERF_END() stops timing a code section. The section counter does not
run, regardless whether the core is enabled or not. This macro is a single write to
the performance counter core.

perf_print_formatted_report()
Prototype: int perf_print_formatted_report (

    void* perf_base,

    alt_u32 clock_freq_hertz,

    int num_sections,

    char* section_name_1, ...

    char* section_name_n)

Thread-safe: No.

Available
from ISR:

No.

Include: <altera_avalon_performance_counter.h>

31-8 PERF_END()
UG-01085

2014.24.07

Altera Corporation Performance Counter Core

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Performance%20Counter%20Core%20(UG-01085%202014.24.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Parameters: perf_base—Performance counter core base address.

clock_freq_hertz—Clock frequency.

num_sections—The number of section counters to display. This must not
exceed <instance_name>_HOW_MANY_SECTIONS.

section_name_1 ... section_name_n—The section names to display. The
number of section names varies depending on the number of sections to display.

Returns: 0

Description: Function perf_print_formatted_report() reads the profiling results from the
performance counter core, and prints a formatted summary table.

This function disables all counters. However, for predictable results in a multi-
threaded or interrupt environment, invoke PERF_STOP_MEASURING() when you
reach the end of the code to be measured, rather than relying on perf_print_
formatted_report().

perf_get_total_time()
Prototype: alt_u64 perf_get_total_time(void* hw_base_address)

Thread-safe: No.

Available
from ISR:

Yes.

Include: <altera_avalon_performance_counter.h>

Parameters: hw_base_address—base address of performance counter core.

Returns: Aggregate global time in clock cycles.

Description: Function perf_get_total_time() reads the raw global time. This is the
aggregate time, in clock cycles, that the performance counter core has been
enabled. This function has the side effect of stopping the counters.

perf_get_section_time()
Prototype: alt_u64 perf_get_section_time

    (void* hw_base_address, int which_section)

Thread-safe: No.

Available from
ISR:

Yes.

Include: <altera_avalon_performance_counter.h>

Parameters: hw_base_address—performance counter core base address.

which_section—counter section number.

Returns: Aggregate section time in clock cycles.

UG-01085
2014.24.07 perf_get_total_time() 31-9

Performance Counter Core Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Performance%20Counter%20Core%20(UG-01085%202014.24.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Description: Function perf_get_section_time() reads the raw time for a given section.
This is the time, in clock cycles, that the section has been running. This function
has the side effect of stopping the counters.

perf_get_num_starts()
Prototype: alt_u32 perf_get_num_starts

    (void* hw_base_address, int which_section)

Thread-safe: Yes.

Available from
ISR:

Yes.

Include: <altera_avalon_performance_counter.h>

Parameters: hw_base_address—performance counter core base address.

which_section—counter section number.

Returns: Number of counter events.

Description: Function perf_get_num_starts() retrieves the number of counter events (or
times a counter has been started). If which_section = 0, it retrieves the number
of global events (times the performance counter core has been enabled). This
function does not stop the counters.

alt_get_cpu_freq()
Prototype: alt_u32 alt_get_cpu_freq()

Thread-safe: Yes.

Available from
ISR:

Yes.

Include: <altera_avalon_performance_counter.h>

Parameters:

Returns: CPU frequency in Hz.

Description: Function alt_get_cpu_freq() returns the CPU frequency in Hz.

31-10 perf_get_num_starts()
UG-01085

2014.24.07

Altera Corporation Performance Counter Core

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Performance%20Counter%20Core%20(UG-01085%202014.24.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Document Revision History

Table 31-6: Document Revision History

Date and
Document

Version

Changes Made Summary of Changes

July 2014

v14.0.0

-Removed mention of SOPC Builder, updated to Qsys Maintenance Release

December
2010

v10.1.0

Removed the “Device Support”, “Instantiating the Core
in SOPC Builder”, and “Referenced Documents”
sections.

—

July 2010

v10.0.0

Updated perf_print_formatted_report() to remove
the restriction on using small C library.

—

November
2009

v9.1.0

No change from previous release. —

March 2009

v9.0.0

No change from previous release. —

November
2008

v8.1.0

Changed to 8-1/2 x 11 page size. No change to content. —

May 2008

v8.0.0

Updated the parameter description of the function perf_
print_formatted_report().

Updates made to
comply with the
Quartus II software
version 8.0 release.

UG-01085
2014.24.07 Document Revision History 31-11

Performance Counter Core Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Performance%20Counter%20Core%20(UG-01085%202014.24.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


PLL Cores 32
2014.24.07

UG-01085 Subscribe Send Feedback

Core Overview
The PLL cores, Avalon ALTPLL and PLL, provide a means of accessing the dedicated on-chip PLL
circuitry in the Altera® Stratix®, except Stratix V, and Cyclone® series FPGAs. Both cores are a component
wrapper around the Altera ALTPLL megafunction.

The PLL core is scheduled for product obsolescence and discontinued support. Therefore, Altera
recommends that you use the Avalon ALTPLL core in your designs.

The core takes an SOPC Builder system clock as its input and generates PLL output clocks locked to that
reference clock.

The PLL cores support the following features:

• All PLL features provided by Altera's ALTPLL megafunction. The exact feature set depends on the
device family.

• Access to status and control signals via Avalon Memory-Mapped (Avalon-MM) registers or top-level
signals on the SOPC Builder system module.

• Dynamic phase reconfiguration in Stratix III and Stratix IV device families.

The PLL output clocks are made available in two ways:
• As sources to system-wide clocks in your SOPC Builder system.
• As output signals on your SOPC Builder system module.

For details about the ALTPLL megafunction, refer to the ALTPLL Megafunction User Guide.

© 2014 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are
trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as
trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance
of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information,
product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
specifications before relying on any published information and before placing orders for products or services.

ISO
9001:2008
Registered

www.altera.com
101 Innovation Drive, San Jose, CA 95134

https://www.altera.com/servlets/subscriptions/alert?id=UG-01085
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(UG-01085%202014.24.07)%20PLL%20Cores&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
http://www.altera.com/literature/ug/ug_altpll.pdf
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html


Functional Description
Figure 32-1: PLL Core Block Diagram

Status

Control

areset
pfdena

pllena

inclk

e1

e0

c1

c0

locked PLL Locked

Avalon-MM
Slave Interface

PLL Reset
PFD Enable
PLL Enable

Reference
Clock

Registers

PLL Core

ALTPLL Megafunction

PLL Clock
Outputs

ALTPLL Megafunction
The PLL cores consist of an ALTPLL megafunction instantiation and an Avalon-MM slave interface. This
interface can optionally provide access to status and control registers within the cores. The ALTPLL
megafunction takes an SOPC Builder system clock as its reference, and generates one or more phase-
locked loop output clocks.

Clock Outputs
Depending on the target device family, the ALTPLL megafunction can produce two types of output clock:

• internal (c)—clock outputs that can drive logic either inside or outside the SOPC Builder system
module. Internal clock outputs can also be mapped to top-level FPGA pins. Internal clock outputs are
available on all device families.

• external (e)—clock outputs that can only drive dedicated FPGA pins. They cannot be used as on-chip
clock sources. External clock outputs are not available on all device families.

The Avalon ALTPLL core, however, does not differentiate the internal and external clock outputs and
allows the external clock outputs to be used as on-chip clock sources.

To determine the exact number and type of output clocks available on your target device, refer to the 
ALTPLL Megafunction User Guide.

PLL Status and Control Signals
Depending on how the ALTPLL megafunction is parameterized, there can be a variable number of status
and control signals. You can choose to export certain status and control signals to the top-level SOPC
Builder system module. Alternatively, Avalon-MM registers can provide access to the signals. Any status

32-2 Functional Description
UG-01085

2014.24.07

Altera Corporation PLL Cores

Send Feedback

http://www.altera.com/literature/ug/ug_altpll.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20PLL%20Cores%20(UG-01085%202014.24.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


or control signals which are not mapped to registers are exported to the top-level module. For details,
refer to the Instantiating the Avalon ALTPLL Core.

System Reset Considerations
At FPGA configuration, the PLL cores reset automatically. PLL-specific reset circuitry guarantees that the
PLL locks before releasing reset for the overall SOPC Builder system module.

Resetting the PLL resets the entire SOPC Builder system module.

Instantiating the Avalon ALTPLL Core
When you instantiate the Avalon ALTPLL core, the MegaWizard Plug-In Manager is automatically
launched for you to parameterize the ALTPLL megafunction. There are no additional parameters that you
can configure in SOPC Builder.

The pfdena signal of the ALTPLL megafunction is not exported to the top level of the SOPC Builder
module. You can drive this port by writing to the PFDENA bit in the control register.

The locked, pllena/extclkena, and areset signals of the megafunction are always exported to the top
level of the SOPC Builder module. You can read the locked signal and reset the core by manipulating
respective bits in the registers. See the Register Definitions and Bit List section for more information on
the registers.

For details about using the ALTPLL MegaWizard Plug-In Manager, refer to the ALTPLL Megafunction
User Guide.

Instantiating the PLL Core
This section describes the options available in the MegaWizard™ interface for the PLL core in SOPC
Builder.

PLL Settings Page

The PLL Settings page contains a button that launches the ALTPLL MegaWizard Plug-In Manager. Use
the MegaWizard Plug-In Manager to parameterize the ALTPLL megafunction. The set of available
parameters depends on the target device family.

You cannot click Finish in the PLL wizard nor configure the PLL interface until you parameterize the
ALTPLL megafunction.

Interface Page

The Interface page configures the access modes for the optional advanced PLL status and control signals.

UG-01085
2014.24.07 System Reset Considerations 32-3

PLL Cores Altera Corporation

Send Feedback

http://www.altera.com/literature/ug/ug_altpll.pdf
http://www.altera.com/literature/ug/ug_altpll.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20PLL%20Cores%20(UG-01085%202014.24.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


For each advanced signal present on the ALTPLL megafunction, you can select one of the following access
modes:

• Export—Exports the signal to the top level of the SOPC builder system module.
• Register—Maps the signal to a bit in a status or control register.

The advanced signals are optional. If you choose not to create any of them in the ALTPLL
MegaWizard Plug-In, the PLL's default behavior is as shown in below.

You can specify the access mode for the advanced signals shown in below. The ALTPLL core signals,
not displayed in this table, are automatically exported to the top level of the SOPC Builder system
module.

Table 32-1: ALTPLL Advanced Signal

ALTPLL
Name

Input /
Outpu

t

Avalon-MM PLL
Wizard Name

Default Behavior Description

ares

et

input PLL Reset Input The PLL is reset only
at device configura‐
tion.

This signal resets the entire SOPC
Builder system module, and restores
the PLL to its initial settings.

plle

na

input PLL Enable Input The PLL is enabled. This signal enables the PLL.

pllena is always exported.

pfde

na

input PFD Enable Input The phase-frequency
detector is enabled.

This signal enables the phase-
frequency detector in the PLL,
allowing it to lock on to changes in
the clock reference.

lock

ed

output PLL Locked Output — This signal is asserted when the PLL
is locked to the input clock.

Asserting areset resets the entire SOPC Builder system module, not just the PLL.

Finish

Click Finish to insert the PLL into the SOPC Builder system. The PLL clock output(s) appear in the clock
settings table on the SOPC Builder System Contents tab.

If the PLL has external output clocks, they appear in the clock settings table like other clocks; however,
you cannot use them to drive components within the SOPC Builder system.

For details about using external output clocks, refer to the ALTPLL Megafunction User Guide.

The SOPC Builder automatically connects the PLL's reference clock input to the first available clock in the
clock settings table.

If there is more than one SOPC Builder system clock available, verify that the PLL is connected to the
appropriate reference clock.

32-4 Instantiating the PLL Core
UG-01085

2014.24.07

Altera Corporation PLL Cores

Send Feedback

http://www.altera.com/literature/ug/ug_altpll.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20PLL%20Cores%20(UG-01085%202014.24.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Hardware Simulation Considerations
The HDL files generated by SOPC Builder for the PLL cores are suitable for both synthesis and
simulation. The PLL cores support the standard SOPC Builder simulation flow, so there are no special
considerations for hardware simulation.

Register Definitions and Bit List
Device drivers can control and communicate with the cores through two memory-mapped registers,
status and control. The width of these registers are 32 bits in the Avalon ALTPLL core but only 16 bits
in the PLL core.

In the PLL core, the status and control bits shown in the PLL Cores Register map below are present
only if they have been created in the ALTPLL MegaWizard Plug-In Manager, and set to Register on the
Interface page in the PLL wizard. These registers are always created in the Avalon ALTPLL core.

Table 32-2: PLL Cores Register Map

Offse
t

Register
Name R/W

Bit Description

31/
15

(2)

30 29 ... 9 8 7 6 5 4 3 2 1 0

0 status R/O (1) phasedone lock

ed

1 control R/
W

(1) pfdena ares

et

2 phase
reconfig
control

R/
W

phase (1) counter_number

3 — — Undefined
Table 32-2 :

1. Reserved. Read values are undefined. When writing, set reserved bits to zero.
2. The registers are 32-bit wide in the Avalon ALTPLL core and 16-bit wide in the PLL core.

Status Register
Embedded software can access the PLL status via the status register. Writing to status has no effect.

UG-01085
2014.24.07 Hardware Simulation Considerations 32-5

PLL Cores Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20PLL%20Cores%20(UG-01085%202014.24.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Table 32-3: Status Register Bits

Bit Number Bit Name Value after
reset

Description

0 locked

(2)
1 Connects to the locked signal on

the ALTPLL megafunction. The
locked bit is high when valid
clocks are present on the output of
the PLL.

1 phasedone

(2)
0 Connects to the phasedone signal

on the ALTPLL megafunction. The
phasedone output of the ALTPLL
is synchronized to the system
clock.

2:15/31 
(1)

— — Reserved. Read values are
undefined.

Table 32-3 :

1. The status register is 32-bit wide in the Avalon ALTPLL core and 16-bit
wide in the PLL core.

2. Both the locked and phasedone outputs from the Avalon ALTPLL
component are available as conduits and reflect the non-synchronized
outputs from the ALTPLL.

Control Register
Embedded software can control the PLL via the control register. Software can also read back the status of
control bits.

Table 32-4: Control Register Bits

Bit Number Bit Name Value after
reset

Description

0 areset 0 Connects to the areset signal on
the ALTPLL megafunction.
Writing a 1 to this bit initiates a
PLL reset.

1 pfdena 1 Connects to the pfdena signal on
the ALTPLL megafunction.
Writing a 0 to this bit disables the
phase frequency detection.

2:15/31 
(1)

— — Reserved. Read values are
undefined. When writing, set
reserved bits to zero.

Table 32-4 :

1. The controlregister is 32-bit wide in the Avalon ALTPLL core and 16-bit
wide in the PLL core.

32-6 Control Register
UG-01085

2014.24.07

Altera Corporation PLL Cores

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20PLL%20Cores%20(UG-01085%202014.24.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Phase Reconfig Control Register
Embedded software can control the dynamic phase reconfiguration via the phase reconfig control
register.

Table 32-5: Phase Reconfig Control Register Bits

Bit
Number

Bit Name Value after
reset

Description

0:8 counter_number — A binary 9-bit representation of the
counter that needs to be reconfig‐
ured. Refer to the Counter_
Number Bits and Selection table
for the counter selection.

9:29 — — Reserved. Read values are
undefined. When writing, set
reserved bits to zero.

30:31 phase (1) — 01: Step up phase of counter_
number

10: Step down phase of counter_
number

00 and 11: No operation

Table 32-5 :

1. Phase step up or down when set to 1 (only applicable to the Avalon
ALTPLL core).

The table below lists the counter number and selection. For example, 100 000 000 selects counter C0 and
100 000 001 selects counter C1.

Table 32-6: Counter_Number Bits and Selection

Counter_Number [0:8] Counter Selection

0 0000 0000 All output counters
0 0000 0001 M counter
> 0 0000 0001 Undefined
1 0000 0000 C0
1 0000 0001 C1
1 0000 0010 C2
... ...
1 0000 1000 C8
1 0000 1001 C9
> 1 0000 1001 Undefined

UG-01085
2014.24.07 Phase Reconfig Control Register 32-7

PLL Cores Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20PLL%20Cores%20(UG-01085%202014.24.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Document Revision History

Table 32-7: Document Revision History

Date and
Document

Version

Changes Made Summary of Changes

December
2010

v10.1.0

Removed the “Device Support”, “Instantiating the Core
in SOPC Builder”, and “Referenced Documents”
sections.

—

July 2010

v10.0.0

No change from previous release. —

November
2009

v9.1.0

Revised descriptions of register fields and bits. Features added to the
register map.

March 2009

v9.0.0

Added information on the new Avalon ALTPLL core. A new PLL core,
Avalon ALTPLL, is
released and the
chapter is updated
accordingly to include
the new core.

November
2008

v8.1.0

Changed to 8-1/2 x 11 page size. No change to content. —

May 2008

v8.0.0

No change from previous release. —

32-8 Document Revision History
UG-01085

2014.24.07

Altera Corporation PLL Cores

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20PLL%20Cores%20(UG-01085%202014.24.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Altera MSI to GIC Generator 33
2014.24.07

UG-01085 Subscribe Send Feedback

Overview

In the PCI subsystem, Message Signaled Interrupts (MSI) is a feature that enables a device function to
request service by writing a system-specified data value to a system-specified message address (using a
PCI DWORD memory write transaction). System software initializes the message address and message
data during device configuration, allocating one or more system-specified data and system-specified
message addresses to each MSI capable function.

A MSI target (receiver), Altera PCIe RootPort Hard IP, receives MSI interrupts through the Avalon-ST
RX TLP of type MWr. For Avalon-MM based PCIe RootPort Hard IP, the RP_Master issues a write
transaction with the system-specified message data value to the system-specified message address of a MSI
TLP received. This memory mapped mechanism does not issue any interrupt output to host the
processor; and it relies on the host processor to poll the value changes at the system-specified message
address in order to acknowledge the interrupt request and service the MSI interrupt. This polling
mechanism may overwhelm the processor cycles and it is not efficient.

The Altera MSI-to-GIC Generator is introduced with the purpose of allowing level interrupt generation to
the host processor upon arrival of a MSI interrupt. It exists as a separate module to Altera PCIe HIP for
completing the interrupt generation to host the processor upon arrival of a MSI TLP.

Background

The existing implementation of the MSI target at Altera PCIe RootPort translates the MSI TLP received
into a write transaction via PCIe Hard IP Avalon-MM Master port (RP_Master). No interrupt output
directed to the host processor to kick start the service routine for the MSI sender is needed.

Feature Description

© 2014 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are
trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as
trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance
of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information,
product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
specifications before relying on any published information and before placing orders for products or services.

ISO
9001:2008
Registered

www.altera.com
101 Innovation Drive, San Jose, CA 95134

https://www.altera.com/servlets/subscriptions/alert?id=UG-01085
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(UG-01085%202014.24.07)%20Altera%20MSI%20to%20GIC%20Generator&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html


The Altera MSI-to-GIC Generator provides storage for the MSI system-specified data value. It also
generates level interrupt output when there is an unread entry. The following figure illustrates the
connection of the MSI-to-GIC Generator module in a PCIe subsystem.

Figure 33-1: MSI-to-GIC Generator in PCIe RP system

This module is connected to RP_Master of PCIe RootPort HIP issuing memory map write transaction
upon MSI TLP arrival. System-specified data value carried by the MSI TLP is written into the module
storage. The same Avalon MM Data Slave port also connects to the host processor for MSI data retrieval
upon interrupt assertion. An Altera MSI-to-GIC Generator module could contain data storage from one
to 32 words of continuous address span. Each data word of storage is associated with a corresponding
numbered bit of Status Bits and Mask Bits registers. Each data word address location can store up to 32
entries.

There is an up to 32-bit Status Register that indicates which storage word location has an unread entry.
Also, there is a similar bit size of Interrupt Mask Register that is in place to allow control of module
behavior by the host processor. The Interrupt Mask register provides flexibility for the host processor to
disregard the incoming interrupt.

The base address assigned for Altera MSI-to-GIC Generator module in the subsystem should cover the
system-specified message address of MSI capable functions during device configuration. Multiple Altera
MSI-to-GIC Generator modules could be instantiated in a subsystem to cover different system-specified
message addresses.

Avalon-MM Slave interfaces of this module honors fixed latency of access to ensure the connected master
(in this case, the RP_Master) can successfully write into the module without back pressure. This avoids
the PCIe upstream traffic from impact because of backpressuring of RP_Master.

Since MSI is multiple messages capable and multiple vectors are supported by each MSI capable function,
there is a tendency that a system-specified message address receives more than one MSI message data
before the host processor is able to service the MSI request. The Component is configurable to have each
data word address to receive up to 32 entries, before any data value is retrieved. When you reach the
maximum data value entry of 32, subsequent write transactions are dropped and logged. This ensures
every write transaction to the storage has no back pressure which may lead to system lock up.

Interrupt Servicing Process

33-2 Interrupt Servicing Process
UG-01085

2014.24.07

Altera Corporation Altera MSI to GIC Generator

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Altera%20MSI%20to%20GIC%20Generator%20(UG-01085%202014.24.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


When a new message data is written into Altera MSI-to-GIC Generator module, the storage word
associated Status bit is set automatically and a level interrupt output is then fired. The host processor that
receives this interrupt output is required to service the MSI request, as indicated in the following
procedure:

1. The host processor reads the Status Register to recognize which data word location of its storage is
causing the interrupt.

2. The host processor reads the firing data word location for its system-specified message data value sent
by the MSI capable function. Upon reading the data word, message data is considered consumed, the
associated Status bit is then unset automatically. If the word location entry is empty, then the Status bit
still remains asserted.

3. The host processor services either the MSI sender or the function who calls for the MSI.
4. Upon completing the interrupt service for the first entry, the host processor may continue to service

the remaining entry if there is any residing inside the word location, by observing the associated Status
bit.

5. The host processor may run through the Status Register and service each firing Status bit in any order.

Registers of Component

The following table illustrates the Altera MSI-to-GIC Generator registers map as observed by the host
processor from its Avalon-MM CSR interfaces. The bit size of each register is numbered according to the
configured number of data word storage for MSI message of the component. The maximum width of each
register should be 32 bits because the configurable value range is from 1 to 32.

Table 33-1: CRA registers map

Word Address Offset Register/ Queue Name Attribute

0x0 Status register R
0x1 Error register RW

Note: Write '1' to clear

0x2 Interrupt Mask register RW

Status Register

The status register contains individual bits representing each of the data words location entry status. An
unread entry sets the Status bit. The Status bit is cleared automatically when entry is empty. The value of
the register is defaulted to ‘0’ upon reset.

The following table illustrates the Status register field.

Table 33-2: Status Register fields

Field Name Bit Location

Status bit for message data word location [31:1] 31:1
Status bit for message data word location [0] 0

UG-01085
2014.24.07 Registers of Component 33-3

Altera MSI to GIC Generator Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Altera%20MSI%20to%20GIC%20Generator%20(UG-01085%202014.24.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Error Register

The Error register bit is set automatically only when the associated message data word location that
contains the write entry, indicating it was dropped due to maximum entry limit reached. The Error bit
indicates the possibility of the MSI TLP targeting the associated system-specified address. This condition
should not happen as each MSI capable function is only allowed to send up to 32 MSI even with multiple
vector supported.

The Error bit can be cleared by the host processor by writing ‘1’ to the location.

Upon reset, the default value of the Error register bits are set to ‘0’.

The following table illustrates the Pending register field.

Table 33-3: Error Register fields

Field Name Bit Location

Error bit for message data word location [31:1] 31:1
Error bit for message data word location [0] 0

Interrupt Mask Register

The Interrupt Mask register provides a masking bit to individual Status bit before the Status is used to
generate level interrupt output. Having the masking bit set, disregards the corresponding Status bit from
causing interrupt output.

Upon reset, the default value of Interrupt Mask register is 0, which means every single data word address
location is disabled for interrupt generation. To enable interrupt generation from a dedicated message
entry location, the associated Mask bit needs to be set to ‘1’.

The following table illustrates the Interrupt Mask register field.

Table 33-4: Interrupt Mask Register fields

Field Name Bit Location

Masking bit for Status [31:1] 31:1
Masking bit for Status [0] 0

Unsupported Feature

The message data entry Avalon-MM Slave represents the system-specified address for MSI function. The
offset seen by MSI function should be similar to the offset seen by the host processors. As this Avalon-
MM Slave interface is accessible (write and read) by both the host processor and the PCIe RP HIP, any
read transaction to the offset address (system-specified address) is considered to have the message data
entry consumed. Observing this limitation, only host master, which is expected to serve the MSI should
read from the Avalon-MM Slave interface. A read from the PCIe RP_Master to the Avalon-MM Slave is
prohibited.

33-4 Error Register
UG-01085

2014.24.07

Altera Corporation Altera MSI to GIC Generator

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Altera%20MSI%20to%20GIC%20Generator%20(UG-01085%202014.24.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Altera SMBus Core Interface

This diagram depicts the top level interfaces for the Altera SMBus Core.

Figure 33-2: Altera SMBus Core Top Level Interfaces

Altera SMBus 
        Core

Clock & Reset

Avalon-MM
Slave Interface

Serial Interface

Interface

The following table details the interfaces of the Altera SMBus Core.

Table 33-5: Clock and Reset

Signal Widt
h

Directio
n

Description

clk 1 Input System clock source used to clock the entire peripheral.

rst_n 1 Input System asynchronous reset source used to reset the entire peripheral. This signal
is asynchronously asserted and synchronously de-asserted. The synchronous de-
assertion must be provided external to this peripheral.

Table 33-6: Avalon-MM Slave Interface

Signal Width Direction Description

addr 4 Input Avalon-MM address

The address is in units of
words. For example, 0x0
addresses the first word
of altera_smb's memory
space and 0x1 addresses
the second word of
altera_smb's memory
space.

read 1 Input Avalon-MM read control

UG-01085
2014.24.07 Altera SMBus Core Interface 33-5

Altera MSI to GIC Generator Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Altera%20MSI%20to%20GIC%20Generator%20(UG-01085%202014.24.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Signal Width Direction Description

write 1 Input Avalon-MM write
control

writedata 32 Input Avalon-MM write data
bus

readdata 32 Output Avalon-MM read data
bus

Table 33-7: Serial Interface

Signal Width Direction Description

smb_clk_oe 1 Output Outgoing SMBus clock.
Output enable for open
drain buffer that drives
SMBCLK pin. When 1,
SMBCLK line is expected
to be pulled low. When 0,
open drain buffer is tri-
stated and SMBCLK line is
externally pulled high.

smb_data_oe 1 Output Outgoing SMBus data.
Output enable for open
drain buffer that drives
SMBDAT pin. When 1,
SMBDAT line is expected
to be pulled low. When 0,
open drain buffer is tri-
stated and SMBDAT line is
externally pulled high.

smb_clk_in 1 Input Incoming SMBus clock,
from the input path of
the SMBCLK open drain
buffer.

smb_data_in 1 Input Incoming SMBus data,
from the input path of
the SMBDAT open drain
buffer.

Table 33-8: Interrupt

Signal Width Direction Description

smb_intr 1 Output Interrupt output to host
processor, active high.

33-6 Altera SMBus Core Interface
UG-01085

2014.24.07

Altera Corporation Altera MSI to GIC Generator

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Altera%20MSI%20to%20GIC%20Generator%20(UG-01085%202014.24.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Component Interface

The Altera MSI-to-GIC Generator component consists of two Avalon-MM Slave interfaces, CSR and Data
storage. The component also provides active high level interrupt output, which is served as a message
arrival notification to the host processor.

The Altera MSI-to-GIC Generator has only one clock domain with one associated reset interface. The
requirement of different clock domains between the host processor and the PCIe HIP is handled by the
Qsys fabric.

The following table describes the interfaces behavior of the component.

Table 33-9: Component interfaces

Interface Port Description Remarks

Avalon MM Slave (Data storage) The Avalon-MM Slave
interface for the Master
that writes MSI message
data to the memory
location.

This interface follows the protocol of
the fix latency of one cycle. Every
single write is consumed in the next
cycle. No back pressure can happen.

Avalon MM Slave (CSR) The Avalon-MM Slave
interface for the host
processor servicing the
MSI.

This interface only has a write latency
of one cycle and a read latency of one
cycle.

Clock Clock input of component. This interface supports maximum
frequency up to 200MHz on Cyclone
V and 350MHz on Stratix V devices.

Reset_n Active LOW reset input. This interface supports asynchronous
reset assertion. De-assertion of reset
has to be synchronized to the input
clock.

IRQ Interrupt output This interface sends an interrupt
output to the host processor. Any
asserted Status bit with associated
Masking bit de-asserted causes the
interrupt to output high.

Component Parameterization

UG-01085
2014.24.07 Component Interface 33-7

Altera MSI to GIC Generator Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Altera%20MSI%20to%20GIC%20Generator%20(UG-01085%202014.24.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


The configuration parameters of the Altera MSI-to-GIC Generator TCL component are listed, below:

Table 33-10: Component parameters

Parameter Name Description Default value Allowable range

MSG_DATA_
WORD

This parameter
corresponds to a
number of address
locations of this
component provided at
its Avalon-MM Slave
interface, accepting
message data value
targeting different
locations. Each data
word location that is
enabled is associated
with a correspondingly
numbered bit of Status
bit, Error bit and Mask
bit registers. For
example: MSG_
DATA_WORD=2 sets
the component's
AvMM interface with a
word address span of
two, 0x0 and 0x1.
These two address
locations contribute to
the single interrupt
output; and then the 2-
bit Status register
indicates which address
location is causing the
interrupt.

1 32:1

33-8 Component Parameterization
UG-01085

2014.24.07

Altera Corporation Altera MSI to GIC Generator

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Altera%20MSI%20to%20GIC%20Generator%20(UG-01085%202014.24.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Parameter Name Description Default value Allowable range

DATA_ENTRY_
DEPTH

This parameter affects
the depth of FIFO
implemented at each
data word address. The
PCI specification
allows each MSI
capable function to
support multiple
vectors up to 32. This
means a function may
allow sending MSI to a
system-specified
address (same targeted
address) with modified
system-specified data
value, up to 32 variants.
This parameter is
applied across all
message data locations
enabled in this
component. For
example: if DATA_
ENTRY_DEPTH is set
to 32, each message
data word location
contains a buffer of 32
in depth to store
incoming write values.

1 32:1

Document Revision History
Table 33-11: Document Revision History

Date and
Document

Version

Changes Made Summary of Changes

July 2014

v14.0

- Initial Release

UG-01085
2014.24.07 Document Revision History 33-9

Altera MSI to GIC Generator Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Altera%20MSI%20to%20GIC%20Generator%20(UG-01085%202014.24.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Altera Interrupt Latency Counter 34
2014.24.07

UG-01085 Subscribe Send Feedback

Overview
A processor running a program can be instructed to divert from its original execution path by an
interrupt signal generated either by peripheral hardware or the firmware that is currently being executed.
The processor now executes the portions of the program code that handles the interrupt requests known
as Interrupt Service Routines (ISR) by moving to the instruction pointer to the ISR, and then continues
operation. Upon completion of the routine, the processor returns to the previous location.

Altera’s Interrupt Latency Calculator (ILC) is developed in mind to measure the time taken in terms of
clock cycles to complete the interrupt service routine. Data obtained from the ILC is utilized by other
latency sensitive IPs in order for it to maintain its proper operation. The data from the ILC can also be
used to help the general firmware debugging exercise.

The Interrupt Latency Calculator sits as a parallel to any interrupt receiver that will consume and perform
an interrupt service routine. The following figure shows the orientation of a Interrupt Latency Calculator
in a system design.

© 2014 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are
trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as
trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance
of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information,
product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
specifications before relying on any published information and before placing orders for products or services.

ISO
9001:2008
Registered

www.altera.com
101 Innovation Drive, San Jose, CA 95134

https://www.altera.com/servlets/subscriptions/alert?id=UG-01085
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(UG-01085%202014.24.07)%20Altera%20Interrupt%20Latency%20Counter&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html


Figure 34-1: Usage model of Interrupt Latency Calculator

Processor
Interrupt Latency
          Calculator

Peripheral

  Data
Master

    IRQ 
Receiver

  CSR
Slave

    IRQ 
Receiver

    IRQ 
Sender

Feature Description
The Altera Interrupt Latency Counter is made up of three sub functional blocks. The top level interface is
Avalon-MM protocol compliant. The interrupt detector block will be activated by the rising edge of the
interrupt signal or pulse, determined by a parameter during component generation. The Interrupt
detector block determines when to start or stop the 32-bit internal counter, which is reset to zero every
time it begins operation without affecting previous stored latency data register value. The Latency data
register is updated after the counter is stopped.

Each Interrupt Latency Counter can be configured to host up to 32 identical counters to monitor separate
IRQ channels. Each counter only observes one interrupt input. The interrupt could be level sensitive or
pulse (edge) sensitive. In the case where more interrupt lines need to be monitored, multiple Interrupt
Latency Counters could be instantiated in Qsys.

Interrupt Latency Calculator only keeps track of the latest interrupt latency value. If multiple interrupts
are happening in series, only the last interrupt latency will be maintained. On the other hand, every start
of interrupt edge refreshes the internal counter from zero.

Avalon-MM Compliant CSR Registers
Each ILC has rows of status registers each being 32 bits in length. The last four rows of CSR registers
corresponding to address 0x20 to 0x23 are fixed regardless of the number of IRQ port count configured
through the Qsys GUI Stop Address 0x0 to 0x1F. The Qsys GUI Stop Address is reserved to store the
latency value which depends on the number of IRQ port configured. For example, if you configure the

34-2 Feature Description
UG-01085

2014.24.07

Altera Corporation Altera Interrupt Latency Counter

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Altera%20Interrupt%20Latency%20Counter%20(UG-01085%202014.24.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


instance to have only five counters, then only addressess 0x0 to 0x4 return a valid value when you try to
read from it. When the IP user tries to read from an invalid address, the IP returns binary ‘0’ value.”.

Table 34-1: ILC Register Mapping

Word Address Offset Register/ Queue Name Attribute

0x0 IRQ_0 Latency Data
Registers

Read access only

0x1 IRQ_1 Latency Data
Registers

Read access only

... ... ...
0x1F IRQ_31 Latency Data

Registers
Read access only

0x20 Control Registers Read and Write access on LSB and Read only for
the remaining bits

0x21 Frequency Registers Read access only
0x22 Counter Stop Registers Read and Write access
0x23 Read data Valid Registers Read access only

Control Register

Table 34-2: ILC Control Register Fields

Field Name ILC Version IRQ Port Count IRQ TYPE Global Enable

Bit Location 31 8 7 2 1 0

The control registers of the Interrupt Latency Counter is divided into four fields. The LSB is the global
enable bit which by default stores a binary ‘0’. To enable the IP to work, it must be set to binary ‘1’. The
next bit denotes the IRQ type the IP is configured to measure, with binary ‘0’ indicating it is sensitive to
level type IRQ signal; while binary ‘1’ means the IP is accepting pulse type interrupt signal. The next six
bits stores the number of IRQ port count configured through the Qsys GUI. Bit 8 through bit 31 stores the
revision value of the ILC instance.

Frequency Register

Table 34-3: Frequency Register

Field Name System Frequency

Bit Location 31 0

The frequency registers stores the clock frequency supplied to the IP. This 32-bit read only register holds
system frequency data in Hz. For example, a 50 MHz clock signal is represented by hexadecimal
0x2FAF080.

UG-01085
2014.24.07 Control Register 34-3

Altera Interrupt Latency Counter Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Altera%20Interrupt%20Latency%20Counter%20(UG-01085%202014.24.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Counter Stop Registers

Table 34-4: Counter Stop Registers

Field Name Counter Stop Registers

Bit Location 31 0

If the ILC is configured to support the pulse IRQ signal, then the counter stop registers are utilized by
running software to halt the counter. Each bit corresponds to the IRQ port. For example, bit 0 controls
IRQ_0 counter. To stop the counter you have to write a binary ‘1’ into the register. Counter stop registers
do not affect the operation of the ILC in level mode.

Note: You need to clear the counter stop register to properly capture the next round of IRQ delay.

Latency Data Registers

Table 34-5: Latency Data Registers

Field Name Latency Data Registers

Bit Location 31 0

The latency data registers holdthe latency value in terms of clock cycle from the moment the interrupt
signal is fired until the IRQ signal goes low for level configuration or counter stop register being set for
pulse configuration. This is a 32-bit read only register with each address corresponding to one IRQ port.
The latency data registers can only be read three clock cycles after the IRQ signal goes low or when the
counter stop registers are set to high in the level and pulse operating mode, respectively.

Data Valid Registers

Table 34-6: Data Valid Registers

Field Name Data Valid Registers

Bit Location 31 0

The data valid registers indicate whether the data from the latency data regsters are ready to be read or
not. By default, these registers hold a binary value of ‘0’ out of reset. Once the counter data is transfered to
the latency data register, the corresponding bit within the data valid register is set to binary '1'. It reverts
back to binary ‘0’ after a read operation has been consumed by the ILC. The values of these registers
determines whether the Interrupt Latency IP back pressures an incoming command through the
waitrequest signal.

32-bit Counter
The 32-bit positive edge triggered D-flop base up counter takes in a reset signal which clears all the
registers to zero. It also has an enable signal that determines when the counter operation is turned on or
off.

34-4 Counter Stop Registers
UG-01085

2014.24.07

Altera Corporation Altera Interrupt Latency Counter

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Altera%20Interrupt%20Latency%20Counter%20(UG-01085%202014.24.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Interrupt Detector
The interrupt detector can be customized to detect either signal edges or pulse using the Qsys interface.
The interrupt detector generates an enable signal to start and stop the 32-bit counter.

Component Interface
Altera Interrupt Latency Calculator has an Avalon-MM slave interface which communicates with the
Interrupt service routine initiator.

The table below shows the component interface that is available on the Altera Interrupt Latency Counter
IP.

Table 34-7: Available Component Interfaces

Interface Port Description Remarks

Avalon-MM Slave (address , write,
waitrequest , writedata[31:0], read,
readdata[31:0])

Avalon-MM Slave
interface for processor to
talk to the IP.

This Avalon-MM slave interface
observes zero cycles read latency with
waitrequest signal. The waitrequest
signal defaults to binary ‘1’ if there is
no ongoing operation. If the Avalon-
MM Read or Write signal goes high,
the waitrequest signal only goes low if
the readdata_valid_register goes high.

Clock Clock input of component. Clock signal to feed the latecy counter
logics.

Reset_n Active LOW reset input/s. Support asynchronous reset assertion.
De-assertion of reset has to be
synchronized to the input clock.

IRQ IRQ signal from the
interrupt signal initiator

Interrupt assertion and deassertion is
synchronized to input clock.

Component Parameterization
The table below shows the configuration parameters available on the Altera Interrupt Latency Counter IP.

Table 34-8: Available Component Parameterizations

Parameter Name Description Default Value Allowable Range

CLOCK_RATE Shows the frequency
of the clock signal
that is connected to
the IP

0 0 – 2^32

UG-01085
2014.24.07 Interrupt Detector 34-5

Altera Interrupt Latency Counter Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Altera%20Interrupt%20Latency%20Counter%20(UG-01085%202014.24.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Parameter Name Description Default Value Allowable Range

INTR_TYPE Value 0: level
sensitive interrupt
input

Value 1: edge/pulse
interrupt input

0 0,1

IRQ_PORT_CNT Allows user to
configure the
number of IRQ
PORT to use.

32 1 - 32

Software Access
Since the component supports two types of incoming interrupts - level and edge/pulse, the software access
routine for supporting each of the interrupt types has slightly different expectations.

Routine for Level Sensitive Interrupts
The software access routine for level sensitive interrupts is as follows:

1. Upon completion of ISR, read the data valid bit to ensure that the data is "valid" before reading the
interrupt latency counter.

2. Read from the Latency Data Register to obtain the actual cycle spend for the interrupt.
The value presented is in the amount of clock cycle associated with the clock connected to Interrupt
Latency Counter.

Routine for Edge/Pulse Sensitive Interrupts
The software access routine for edge/pulse sensitive interrupts is as follows:

1. Upon completion of ISR, or at the end of ISR, software needs to write binary ‘1’ to one of the 32-bit
registers of the Counter Stop Register to stop the internal counter from counting. The LSB represents
counter 0 and the MSB represents counter 31. This is the same as the level sensitive interrupt. Data
valid bit is recommended to be read before reading the latency counter.

2. Read from Latency Data Register to obtain the actual cycle spend for the interrupt. The counter stop
bit only needs clearing when the IP is configured to accept pulse IRQ. If level IRQ is employed. The
counter stop bit is ignored.

34-6 Software Access
UG-01085

2014.24.07

Altera Corporation Altera Interrupt Latency Counter

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Altera%20Interrupt%20Latency%20Counter%20(UG-01085%202014.24.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Implementation Details

Interrupt Latency Counter Architecture
Figure 34-2: Interrupt Latency Calculator Architecture

The interrupt latency calculator operates on a single clock domain which is determined by which clock it
is receiving at the CLK interface. The interrupt detector circuit is made up of a positive-edge triggered
flop which delays the IRQ signal to be XORed with the original signal. The pulse resulted from the
previous operation is then fed to an enable register where it will switch its state from logic ‘low’ to ‘high’.
This will trigger the counter to start its operation. Prior to this, the reset signal is assumed to be triggered
through the firmware. Once the Interrupt service routine has been completed, the IRQ signal drops to
logic low. This causes another pulse to be generated to stop the counter. Data from the counter is then
duplicated into the latency data register to be read out.

When the interrupt detector is configured to react to a pulse signal, the incoming pulse is fed directly to
enable the register to turn on the counter. In this mode, to halt the counter’s operation, you have to write
a Boolean ‘1’ to the counter stop bit. Only the first IRQ pulse can trigger the counter to start counting and
that subsequent pulse will not cause the counter to reset until a Boolean ‘1’ is written into the counter stop
register. In ‘pulse’ mode, the latency measured by the IP is one clock cycle more than actual latency.

UG-01085
2014.24.07 Implementation Details 34-7

Altera Interrupt Latency Counter Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Altera%20Interrupt%20Latency%20Counter%20(UG-01085%202014.24.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


IP Caveats
There are limitations in the Altera interrupt latency which the user needs to be aware of. This limitation
arises due to the nature of state machines which incurs a period of clock cycle for state transitions.

1. The data latency registers cannot be read before a first IRQ is fired in any of the 32 channels. This
causes the Waitrequest signal to be perpetually high which would lead to a system stall.

2. The data registers can only be read three clock cycles after the counter registers stop counting. These
three clock cycles originate from the state machine moving from the start state to the stop/store state.
It takes an additional clock cycle to propagate the data from the counter registers to the data store
registers.

3. In the pulse IRQ mode, there is an idle cycle present between two consecutive write commands into
the counter stop register. So, in the event that channel 1 is halted immediately after channel 0 is halted,
then the minimum difference you see in the registered values is 2.

Document Revision History
Table 34-9: Document Revision History

Date and
Document

Version

Changes Made Summary of Changes

July 2014

v14.0

- Initial Release

34-8 IP Caveats
UG-01085

2014.24.07

Altera Corporation Altera Interrupt Latency Counter

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Altera%20Interrupt%20Latency%20Counter%20(UG-01085%202014.24.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

