

Digital Predistortion Reference Design Background
Purpose

The purpose of this reference design is to demonstrate that Altera®
Stratix™ and Cyclone™ devices are suitable in performance and capacity
to implement DPD solutions. The MATLAB simulation approach allows
you to see that the DPD algorithm works, before you simulate and then
synthesize the RTL for Stratix and Cyclone devices.

The DPD reference design is not a complete solution but provides a useful
evaluation platform for you to start developing a complete solution for a
real system.

Background DPD is commonly used to linearize PAs. Ideal PAs are perfectly linear.
Their response can be described with the equation, Vout = kVin (see
Figure 1).

Figure 1. Ideal PA

However, real PAs as used in wireless systems exhibit some nonlinearities
and eventually reach saturation. This nonlinearity can be expressed by
adding the term fnl into the equation, where fnl is used to describe the
nonlinearity, Vout = fnlkVin (see Figure 2).

Figure 2. Real PA

VIN

VOUT = k VIN

VOUT

VIN

VOUT = fNL k VIN

VOUT
2 Altera Corporation
Preliminary

Background Digital Predistortion Reference Design
The nonlinearity adversely affects the overall performance of a wireless
system. It causes in-band distortion, which degrades the performance of
the receiver and out-of-band distortion, which degrades the performance
of receivers in adjacent channels.

The task of the predistorter is to add predistortion before the power
amplifier, which is exactly the inverse of the distortion caused by the
power amplifier (see Figure 3). When combining the predistorter with the
power amplifier, the terms fnl and f-1

nl cancel out, and the overall system
can be described by the ideal PA equation Vin=kVout.

Figure 3. DPD

The nonlinearity of the PA is affected by ageing and changes in the
operating environment, in particular the temperature. For this reason, the
nonlinearity changes over time, and the solution should be made
adaptive such that the predistorter tracks the changes in behavior of the
PA.

Figure 4 describes the basic algorithm implemented in the reference
design. The incoming complex samples, in I and Q, have correction
factors applied from the LUT and then sent to the radio frequency (RF)
module. The addresses for the LUT are derived from the input power. The
LUT must contain two values for each location—the real part I and the
imaginary part Q.

VIN

VOUT = fNL k VIN

VOUT

-1
Altera Corporation 3
Preliminary

Digital Predistortion Reference Design Functional Description
Figure 4. Basic Algorithm

In the RF module, samples are upconverted and sent to the PA. The PA
output is downconverted, which allows you to measure the error, i.e., the
difference between the input phase and magnitude, and the measured
phase and magnitude. Obviously, the delay blocks ensure that the input
is compared to the correct ouput value. The error signal is then used to
update the values currently stored in the LUT.

The LUT address is derived from the input power. Hence this algorithm
is only able to correct for phase and magnitude errors that are purely a
function of the current input power.

Functional
Description

Figure 5 shows the block diagram of the DPD reference design, a PA, an
upconverter, and a downconverter.

I, Q in

r = (I + Q)2 2

r = (I + Q)2 2 LUT = (I + Q)

Delay

Delay

x (-1)

x (-1)

I + Q
Modulation

P

I + Q
Demodulation

φ = arctan(I/Q) φ = arctan(I/Q)

r = (I + Q)2 2 1/21/2
4 Altera Corporation
Preliminary

Functional Description Digital Predistortion Reference Design
Figure 5. Block Diagram

The reference design is an adaptive LUT-based DPD solution.

LUT

Delay

Delay

DelayDelay

Write I

Predistorted I

Predistorted Q

PA In I

PA In Q

Delay PA Input IDelay PA
Input Q

Write Q

LUT Write
Address

Index
Calculation

Nios
Processor

Custom
Instructions

Feedback Processing

Predistorter

DPD Reference Design

RAM

Avalon Bus

LUT Index

CORDIC
Block

Delay

DAC &
Upconverter

ADC &
Downconverter

PA Out I

PA Out Q

PA
Altera Corporation 5
Preliminary

Digital Predistortion Reference Design Functional Description
Input data for the PA is fed into the predistorter, which reads an
appropriate correction value (LUT value) from the LUT and uses it to
modify the input data. The resultant modified input data is referred to as
predistorted data, which is converted into RF to be fed into the PA.

The feedback processing block performs the adaptive processing to
update the values in the LUT. The updated values in the LUT reflect
changes in the PA behavior over time from ageing and temperature, and
at startup to determine the PA behavior. To do this, the PA output (in
digital form), PA input, and the address of the LUT value that is used to
modify (i.e., predistort) the PA input are fed into this block.

Predistorter

The input data (in cartesian form) is fed into the index calculation block,
which determines the index (address) of the LUT value. This LUT value
modifies the delayed input data. For the reference design, only power
indexing is used i.e., the power of the input data determines the LUT
index. You can implement other indexing schemes such as magnitude or
a FIR filter using a number of previous input magnitudes.

The input data is delayed by the delay blocks, prior to undergoing a
complex multiplication with the cartesian LUT value read from the LUT,
to compensate for the delay through the index calculation block and the
reading out of data from the LUT.

The input data and LUT indices (LUT read addresses) are delayed before
being output from the predistorter to be fed into the feedback processing
block. This delay compensates for the delay of the predistorted signal
traveling to the PA and then the PA output making its way back to the
feedback processing path. In the reference design, as no real PA is being
used and everything remains in the digital domain, a fixed delay (integral
number of clock cycles) is used. For a hardware implementation using a
real PA, a more elaborate delay matching scheme will be required to
synchronize the feedback PA output with the PA input.

Feedback Processing

f This section is an overview. For a more detailed description on the
design’s software, see “Software Description” on page 34.

The feedback processing block comprises the following components:

■ CORDIC block
■ Nios processor
■ General purpose RAM
6 Altera Corporation
Preliminary

Functional Description Digital Predistortion Reference Design
The feedback processing block uses a Nios processor and hardware
acceleration. The Nios processor offers you the flexibility to change the
algorithm or to implement your own algorithm, without having to make
significant changes to the RTL. The hardware acceleration ensures that
the feedback path exhibits reasonable performance.

The adaptive algorithm works with the PA input and output values in
polar form. However, they are available in cartesian form; the conversion
of cartesian to polar co-ordinates can be a time-consuming process if it is
implemented on a processor. Furthermore, it is not possible to pipeline
these tasks on simple processors such as the Nios processor. Thus the
conversion is hardware accelerated using a CORDIC.

CORDIC Block

The reference design implements an Altera CORDIC reference design, for
the cartesian-to-polar and polar-to-cartesian conversions. CORDIC is a
hardware-efficient algorithm that allows trigonometric functions to be
performed using only shifts and adds. Because of its simplicity, it offers
high performance. CORDIC is an iterative algorithm that performs
various conversions and uses only additions, subtractions and shift
operations. The CORDIC is implemented using logic elements (LEs) that
can operate in arithmetic mode, where each LE is configured to contain a
full adder/subtractor cell plus associated register.

f For more information on the CORDIC reference design, refer to
Application Note 263 CORDIC Reference Design.

Nios Processor

The Nios processor uses the Avalon™ bus to communicate to its
peripherals.

The Nios processor communicates with the CORDIC block via the Avalon
bus. The Nios processor reads PA input and output values in polar form
(and also the LUT index) from the CORDIC Avalon slave interface. Using
these values, the Nios processor implements the algorithm and calculates
the new LUT value in polar form. The Nios processor writes this value
back to the CORDIC block, and the LUT address that it refers to (this is
the same value as the LUT index that it previously read). CORDIC
converts the polar form into cartesian. The CORDIC block then writes this
value to the main LUT at the LUT address provided by the Nios
processor.
Altera Corporation 7
Preliminary

www.altera.com/literature/an/an263.pdf

Digital Predistortion Reference Design Functional Description
Scheduling of Operations—The CORDIC Frame

The DPD reference design performs the following repeating cycle of
operations:

1. Cartesian PA input and output values are fed into the CORDIC
block.

2. The polar PA input and output values are read from the CORDIC
block by the Nios processor.

3. The Nios processor implements the algorithm to calculate the new
LUT value in polar form.

4. The Nios processor writes this LUT value to the CORDIC block.

5. The CORDIC block converts the LUT value into cartesian form and
then writes it to the LUT.

6. Repeat from step 1.

No deviation from the cycle occurs and the cycle takes a finite number of
clock cycles. The cycle is called a CORDIC frame.

Figure 6 on page 8 shows the CORDIC frame in relation to the operations
performed.

Figure 6. CORDIC Frame Note (1)

Note:
(1) The numbers in the figure refer to the preceding text.

Synchronizing the Nios Processor to the CORDIC Block

For the cycle to work, an input signal is fed into the CORDIC block to
signify the start of a CORDIC frame. Also, the Nios processor must then
synchronize itself to the CORDIC frame as seen by the CORDIC block.

A small window at the start of the frame is predetermined to be a valid
phase. During this phase, if the Nios processor attempts to read from the
CORDIC block, a valid value is returned. During the rest of the time

CORDIC Frame Valid

1

Invalid

CORDIC Frame
CORDIC Block Operations

5

2 3CORDIC Frame
Nios Processor Operations

4

8 Altera Corporation
Preliminary

Functional Description Digital Predistortion Reference Design
within the CORDIC frame, an invalid value is returned to the Nios
processor. So after startup and initialization has completed, the Nios
processor repeatedly reads from the CORDIC block until a valid value is
returned. At this point the Nios processor (within a margin of the valid
window) knows where it is in the CORDIC frame and thus can commence
with the DPD algorithm.

It has been assumed that during this synchronizing phase the Nios
processor attempts to read the register in the CORDIC block holding the
PA input magnitude value; an invalid value would be a value of all ones
(this magnitude could not normally occur as magnitudes must always be
positive).

Nios Processor Operations

During a CORDIC frame, the Nios processor performs the following
tasks (also see Figure 7):

1. Sync-up with the CORDIC block by polling the PA input
magnitude. The CORDIC block ensures that the INVALID_FLAG is
always read for all but the first WINDOW_VALID cycles of a CORDIC
frame. When the Nios processor reads a positive value it knows it
has read a valid value and moves on to the next stage.

2. Read the following remaining polar form data from the output of
the CORDIC block to be used this cycle:

a. PA input phase

b. PA output magnitude

c. PA output phase

d. LUT index

3. Compute the error in magnitude and phase between PA-out and
PA-in and pass through the DPD algorithm to compute the new
LUT value(s) around the given index.

4. Update the Nios private polar form LUT with the new LUT value(s).

5. Compensate for the gain of the CORDIC by multiplying the
magnitude component of each new LUT entry by
CORDIC_COMP_FP.
Altera Corporation 9
Preliminary

Digital Predistortion Reference Design Functional Description
6. Write the results back to the CORDIC block for conversion to
cartesian format (the CORDIC block automatically writes the
cartesian-format LUT value(s) to the primary LUT).

Figure 7. The CORDIC Frame Note (1)

Note:
(1) The numbers in the figure refer to the preceding text.

Memory Effects

The memory effect models the distortions due to short-term temperature
and electrical variations on the silicon of the PA transistors. The
temperature depends on the magnitude of current and previous input
samples and hence a FIR filter can be used in the address calculation block
to compensate for the memory effect, by providing a weighted sum of
previous inputs as index to the look-up table. This solution has not been
verified using an actual PA and is suggested if you want to implement
your own DPD system.

MATLAB GUI

Altera provides a bit-accurate and cycle-accurate (cycle-accurate only at
outputs) MATLAB model of the DPD reference design. In addition,
Altera provides a MATLAB environment, which, via a user-friendly GUI,
allows you to perform the following actions:

■ Configure the reference design to your exact requirements— set bit
widths, depth of LUT, set learn factor

■ Configure the test scenario—which PA model to use, what type and
how many input stimuli to apply, whether to run the simulation
repeatedly until the design has reached convergence

■ Examine graphs of results, write test input and output data, and LUT
values to text files for use in RTL simulation. Also write to files the
Verilog HDL and C constants that describe your configurations, for
use in RTL simulation and synthesis.

You can experiment further in the GUI (if you turn off the reference
design configuration), by configuring the following options:

■ Change bit widths
■ Add interpolation
■ Use magnitude indexing (as opposed to power indexing) of the LUT

PA Input Magnitude Valid

2b2a1 2c 3

Invalid

6CORDIC Frame
Nios Processor Operations

2d 4 5
10 Altera Corporation
Preliminary

Functional Description Digital Predistortion Reference Design
■ Change the number of CORDIC iterations (see AN263 CORDIC
Reference Design)

■ Choose a different DPD algorithm

1 The MATLAB model is no longer representative of the RTL
design, if you turn off the reference design configuration.

These additional options are provided purely for experimentation
purposes in the MATLAB environment; if you wish to implement one of
these variations in hardware, you will have to modify the hardware
source files accordingly.

Design Flow

The design flow involves the following steps:

1. Configure the reference design settings in MATLAB until you are
satisfied with the results (displayed by the graphs).

2. Write the Verilog HDL, C constants and test data to files.

3. Build the design using SOPC Builder.

4. Use the test data in RTL simulation to confirm that the hardware
provides the same results as the MATLAB model.

5. Synthesize the design.

Functional Description

Stimuli (random, constant, linearly changing) is generated in MATLAB in
cartesian format (I + j × Q). The stimuli is interpolated and applied to the
predistorter. The resulting predistorted data is also in cartesian format.

In a real situation, the predistorted data is converted to analogue, filtered,
upconverted to RF and then applied to the PA.

To keep the situation simple, such that only the performance of the DPD
design is being examined, in MATLAB no modelling of these processes is
performed. The predistorted digital data is applied directly to a MATLAB
PA model that accepts digital input. Also the output from the PA model
is applied directly to the reference design (no downconverion or
digitizing required).

The predistorter attempts to add 3rd and 5th order intermodulation
products to the input signals in a way that cancels out the 3rd and 5th order
intermodulation products added by the PA. Thus the bandwidth of the
Altera Corporation 11
Preliminary

www.altera.com/literature/an/an263.pdf
www.altera.com/literature/an/an263.pdf

Digital Predistortion Reference Design Functional Description
predistorted signal must be three times greater than the bandwidth of the
input signals to be able to represent up to the 5th order intermodulation
products. Bearing in mind, that in the real world the predistorted signals
are fed into a DAC and then low-pass filtered at the Nyquist rate (half the
input sample rate), the predistorted signals must have a sample rate of at
least six times that of the original input signals.

Thus, in MATLAB the input signals are interpolated by a factor of six
before being fed into the predistorter. The interpolation used is ideal to
ensure that only the performance of the DPD design is being examined.
For every input sample, five zero-valued samples are added and then the
resultant data stream is low-pass filtered using an ideal rectangular filter.

To help evaluate the performance of the DPD reference design, a figure
for in-band distortion is calculated. This involves calculating the EVM,
which is given by the following equation:

EVM = rms(error_vector) / rms(input magnitude) × 100

Where:

error_vector = |output – input|

In MATLAB, the output from the PA is at a rate of six times that of the
original input (as the input was interpolated by factor of six before being
applied to predistorter). Thus, the output is decimated by a factor of six
using an ideal rectangular low-pass filter, before calculating the EVM.

The following two measurements provide the performance of the DPD
reference design:

■ The EVM is calculated, which indicates in-band distortion. This EVM
is compared to the EVM when no DPD is being used (the EVM of the
PA) to give a comparative figure of improvement

■ The ACLR is calculated, which indicates out-of-band distortion. This
ACLR is the power (in dB) that the adjacent channel is down from the
main in-band channel. The ACLR is also calculated for a system with
no DPD, to give a comparative figure of improvement

Also, a visual indication of the results is given by various graphs.

RTL Testbench

The RTL testbench sends PA-in and PA-out data stored in MATLAB-
generated text files and compares the predistorted result with expected
values stored in a text file.
12 Altera Corporation
Preliminary

Before You Begin Digital Predistortion Reference Design
The testbench implements a method of synchronizing up with the Nios
processor, so that PA data is not written until the Nios processor has run
all its initialization code. When the Nios processor is ready to begin
processing CORDIC data, it first writes to the testb_if Avalon slave.

The top-level testbench, located in dpd_nios.v, performs the following
tasks:

■ Generates the system clock
■ Waits for the Nios processor to write to testb_if, whch signifies that

the Nios processor has completed its initialization and is ready to
begin polling the CORDIC block for valid data

■ Sends PA in and PA out data
■ Checks predistorted data values
■ Checks LUT indices are calculated correctly for each PA in data
■ Checks each write to the LUT

The system uses a single clock for all components.

Before You
Begin

This section involves the following steps:

■ “Software Requirements”
■ “Install the Design”

Software Requirements

The reference design requires the following software:

■ Quartus® II software version 3.0, or higher
■ Nios embedded processor, version 3.02
■ MATLAB version 6.5
■ ModelSim version 5.7a

Install the Design

To install the reference design, run the .exe and follow the installation
instructions. Figure 4 shows the directory structure.
Altera Corporation 13
Preliminary

Digital Predistortion Reference Design Design Walkthrough
Figure 8. Directory Structure

Design
Walkthrough

The design walkthrough involves the following steps:

■ “Parameterize the Design”
■ “Auto-generate Verilog HDL Simulation Files from MATLAB”
■ “Build the SOPC Builder Project”
■ “Simulate the Design”
■ “Synthesize the Design”

Parameterize the Design

To parameterize the design or examine a DPD design’s performance,
perform the following steps:

ip
Contains the IP files.

source
Contains the source files.

build
Contains your build files for simulation and synthesis.

matlab
Contains the MATLAB source files.

software
Contains the software source files.

quartus
Contains the files for the Quartus II software and SOPC Builder.

verilog
Contains the Verilog HDL source files.

matlab
Contains MATLAB files.

tb
Contains the MATLAB GUI and associated files.

verilog
Contains Verilog HDL files.

scripts
Contains the scripts for simulation.

tb
Contains the Verilog HDL testbench.

test
Contains the MATLAB test scripts.

predistortion

cordic
Contains the CORDIC reference design.

matlab_gen
Contains MATLAB working files.

dat_files
Contains the MATLAB-generated files for RTL simulation.
14 Altera Corporation
Preliminary

Design Walkthrough Digital Predistortion Reference Design
1. Start the MATLAB GUI.

a. Start MATLAB.

b. Change the current directory to predistortion/test/matlab/tb.

c. Type the following command:

dpd_gui

1 Output messages are still output to the MATLAB command
window.

The Digital Predistortion GUI opens (see Figure 3).

1 The white bar at the bottom of the GUI displays
recommendations, if you enter unsuitable values.

Figure 9. DPD GUI

2. In the Algorithm Configuration part of the digital predistortion
GUI, perform the following steps:
Altera Corporation 15
Preliminary

Digital Predistortion Reference Design Design Walkthrough
a. If you are using the reference design, turn on the Reference
Design Configuration, otherwise turn it off.

1 Upon starting MATLAB and whenever the Reference
Design Configuration is turned on, the Algorithm
Configuration section has all the appropriate settings for
the default reference design configuration.

1 If turned off, then you can only work in the MATLAB
domain; the RTL will not match the MATLAB model. Thus,
only turn off this option for experimentation purposes of
other schemes or variants.

1 Many options are greyed out if you turn on the Reference
Design Configuration, the rest of this walkthrough
assumes that you turn it off to allow the explanation of all
the options.

b. In the Algorithm drop-down box, choose the algorithm type.
For all algorithms you can enter the LUT size 1 and learn factor.
For certain algorithm types you can enter the LUT size 2, and
the FIR coefficient bit widths and coefficients values.

f For a desription of the algorithms, contact Altera.

c. Enter the bit widths for the following signals:

• PA IQ signals. The number of bits in PA input and output
signals

• LUT IQ signals. The number of bits in LUT values
• Phase signals: The number of bits for phase
• CORDIC XY precision extend: The number of bits to extend

XY vectors used in the CORDIC block, which improves the
accuracy of the results of polar or cartesian value
calculation

• CORDIC phase precision extend. The number of bits to
extend phase signals used in the CORDIC block, which
improves the accuracy of the results of cartesian or polar
values calculated

• Nios fixed point fractional bits. The Nios processor uses
32-bit fixed-point format. This field determines the number
of fractional bits.

d. In the Feedback Performance section enter the following values
to determine the modelling performance of the feedback path:
16 Altera Corporation
Preliminary

Design Walkthrough Digital Predistortion Reference Design
1 Input signals are applied every clock cycle, yet it takes a
finite number of clock cycles for the feedback path to
process one set of values to calculate a LUT value, before
being able to process the next set of values.

• Enter the delay for Nios to calculate the next LUT value in
terms of how many input samples surpass.

• Also there is a delay between the Nios calculating the new
LUT value and the LUT being updated with that value
(delay due to CORDIC conversion of polar to cartesian).
Enter the delay in updating the LUT, in terms of number of
input samples.

e. For each calculated LUT value, the LUT values nearby could
also be altered, thereby improving convergence time. To enable
this feature, turn on Interpolation Enable and enter the
number of LUT values to interpolate above and below the new
calculated LUT value.

f. Enter the number of Cordic Iterations. The accuracy and
latency of the cartesian-to-polar and vice-versa is determined
by the number of CORDIC iterations. The more iterations (up
to the bit width of the inputs) improves the accuracy of the
results.

3. In the Test Environment Configuration part of the digital
predistortion GUI, perform the following steps:

a. In the PA Model drop-down box, choose the PA model. For the
reference design Altera recommends using Saleh model.

b. To use the previous run’s final LUT, turn on Use previous run’s
LUT.

c. To load the LUT from text files, turn on Load LUT from Text
File. This option is only available for certain DPD algorithms.
The LUT files must be in the build/mat_gen/dat_files directory.
The following files are required:

• init_lut_iq_table.txt. The initial cartesian values of the LUT
• init_lut_magn_fp.txt. The initial magnitude scaled by the

CORDIC gain and represented in Nios fixed-point format
of the LUT

• init_lut_phase_fp.txt. The initial phase, represented in
Nios fixed-point format of the LUT
Altera Corporation 17
Preliminary

Digital Predistortion Reference Design Design Walkthrough
d. In the Input Stimuli drop-down box, choose the input stimuli.
For constant input stimuli, you can enter the magnitude and
phase.

e. Enter the number of input samples. Remember that these
samples are interpolated by a factor of six, thus generating six
times the number of samples to be fed into the predistorter.

f. For fixed point input stimuli, turn on Fixed Point, otherwise
turn it off. If turned off, signal values will be between –1 and +1.

g. To repeatedly run the simulation until convergence has been
achieved turn on Run until converges, otherwise turn it off.
Turning it on can result in long simulation times.

h. If you turned on Run until converges, you have to define
convergence. Enter the number of times the EVM is greater
than previous EVM defines attaining convergence. Thus for
each simulation run (assuming the number of input batches is
1), the EVM is calculated and compared to the previous run’s
EVM. Simulation runs are repeated until the current EVM has
exceeded the previous ones by the number entered in the box.
At this point the DPD reference design has achieved
convergence and so simulation stops.

i. Enter the number of input batches to run, with each simulation
run comprising the number of input stimuli specified in
Number of Input Samples. If Run until converges is turned
on, this number of input batches are run before comparing the
EVM with the previous (average EVM over previous batch run)
EVM.

4. Click Run, to run the simulation.

The MATLAB command window prints out the EVM and ACLR figures
for the run.

5. Select the type of graph that you want MATLAB to plot. The options
include examining final LUT values, magnitude and phase errors,
cartesian errors and frequency plots.

6. When you have viewed the graph, click Close Plots.
18 Altera Corporation
Preliminary

Design Walkthrough Digital Predistortion Reference Design
Auto-generate Reference Design Configuration and Test Data
For Verilog HDL Simulation from MATLAB

Once MATLAB testing reaches a conclusion with the configuration of a
suitable reference design, to auto-generate test data for Verilog simulation
from MATLAB, perform the following steps:

1 You can only auto-generate Verilog HDL simulation files, if you
turn on Reference Design Configuration.

1. Enter the number of data values that you want to write in Number
of Data Values to Write.

2. Enter a value in Start offset to write LUT table and data from. If
you want to use the files for RTL simulation you must enter 0.

3. Click Write Data & LUT to Files to write the data and LUT to
predistortion/test/dat_files

4. To write data values midway through the simulation, perform the
following steps:

a. Run the simulation once.

b. Turn on Use Final LUT from Previous Run.

c. Click Run, to run the simulation for a second time.

d. Click Write Data & LUT to Files to write the data and LUT to
predistortion/test/dat_files.

5. Click Write Verilog & C Constants, to write the required Verilog
HDL parameters and C constants to the following files:

● predistort/source/verilog/dpd_inc_p2.v
● predistort/ip/cordic/source/verilog/cordic_inc_p2.v
● predistort/source/verilog/cordic_convert_inc.v
● predistort/source/software/predistort.h.

MATLAB Results for Default Configuration

For the default parameters of the DPD Reference Design, turn on
Reference Design Configuration and see the settings in the MATLAB
GUI.
Altera Corporation 19
Preliminary

Digital Predistortion Reference Design Design Walkthrough
The Saleh power amplifier model was used and random input stimuli
was selected with 500 input samples (MATLAB interpolates to give 3000
samples).

Run until convergence was turned on and convergence was defined as:

■ EVM > prev EVM = 10.
■ The Number of input batches = 10.

The final results were EVM reduction over EVM when no DPD
implemented = 95.838%

No Predistortion

3rd order > Average sideband magnitude = –55.943 dB, maximum
sideband magnitude = –30.945 dB

5th order > Average sideband magnitude = –83.768 dB, maximum
sideband magnitude = –43.624 dB

Predistortion

3rd order > Average sideband magnitude = –110.121 dB, maximum
sideband magnitude = –86.145dB

5th order > Average sideband magnitude = –114.752 dB, maximum
sideband magnitude = –90.715 dB

Figure 10 through Figure 13 show the various MATLAB plots for the
default configuration.
20 Altera Corporation
Preliminary

Design Walkthrough Digital Predistortion Reference Design
Figure 10. Frequency Plot
Altera Corporation 21
Preliminary

Digital Predistortion Reference Design Design Walkthrough
Figure 11. Magnitude and Phase Errors
22 Altera Corporation
Preliminary

Design Walkthrough Digital Predistortion Reference Design
Figure 12. Cartesian Errors
Altera Corporation 23
Preliminary

Digital Predistortion Reference Design Design Walkthrough
Figure 13. LUT Values

Build the SOPC Builder Project

At this point you have used the MATLAB GUI, and should be confident
of the performance of the reference design. You should also have written
the Verilog HDL and C constants that configure the reference design and
the test data to apply in the RTL simulation. You can now build the RTL
for the reference design. When you have finished this section, the RTL,
software, and simulation files for your reference design will be in the
predistortion\build\dpd_nios directory.

To build the SOPC Builder project involves the following steps:

■ Run the Perl Script
■ Open the Quartus II Project
24 Altera Corporation
Preliminary

Design Walkthrough Digital Predistortion Reference Design
■ Launch SOPC Builder
■ Generate the System

Run the Perl Script

The perl script performs the following actions:

■ Creates the predistortion\build\dpd_nios directory
■ Creates a directory structure for your design in the

predistortion\build\dpd_nios directory
■ Copies the required files into the predistortion\build\dpd_nios

directory

Once you have run the perl script you can use SOPC Builder to generate
the project files and perform simulation and synthesis. To run the perl
script perform the following steps:

1. Open the command prompt (Windows Start menu).

2. Use the cd command to change the predistortion\build directory.

3. Type the following command:

perl gen_dpd_frame.pl -relr

As it runs, the perl script informs you of the files that are being copied.

Open the Quartus II Project

To open the dpd_nios_top.quartus project, perform the following steps:

1. Open the Quartus II software.

2. Choose Open Project (File menu).

3. Βrowse to the installed predistort/build/dpd_nios/ directory.
Choose the dpd_nios_top.quartus project file.

The top-level block diagram file (BDF) for this project, dpd_nios_top.bdf,
appears (see Figure 14).

1 Τhe BDF gives a schematic view of the top level input/outputs
of the reference design.
Altera Corporation 25
Preliminary

Digital Predistortion Reference Design Design Walkthrough
Figure 14. dpd_nios_top.bdf

Launch SOPC Builder

To launch SOPC Builder, double click on the dpd_nios symbol within the
BDF. The SOPC builder system contents page for the dpd_nios appears
(see Figure 15).

f For more information on customizing the Nios processor, refer to the
SOPC Builder User Guide and the documentation that is included with
the NDK.
26 Altera Corporation
Preliminary

http://www.altera.com/literature/ug/ug_sopc_builder.pdf
http://www.altera.com/literature/ug/ug_sopc_builder.pdf

Design Walkthrough Digital Predistortion Reference Design
Figure 15. SOPC Builder System Contents Page

Generate the System

To generate the dpd_nios system, perform the following steps:

1. Click the System Generation tab in SOPC Builder.

1. Click Generate.

This action generates the NDK, the Nios CPU and the custom instruction
macros in excalibur.h. It also compiles and links the source files and
places the result in the general_purpose_RAM.srec file. When the
generation is complete a message is displayed (see Figure 16).
Altera Corporation 27
Preliminary

Digital Predistortion Reference Design Design Walkthrough
Figure 16. System Generation Completed Message

Simulate the Design

The Run Modelsim button in the System Generation tab is enabled after
your system has finished generating. Click Run Modelsim to run the
Modelsim software automatically and load the project file generated for
your system.

1 You must specify the correct path to the ModelSim software by
choosing SOPC Builder Setup (File menu).

f For more information on generating your design, refer to the SOPC
Builder Data Sheet.
28 Altera Corporation
Preliminary

Design Walkthrough Digital Predistortion Reference Design
When the system generation completes, the simulation directory contains
all of the files necessary for simulation. Table 1 describes the files that are
created.

You may wish to replace the generated wave_presets.do file with a more
detailed version that comes with the design. The file
wave_presets.do_keep has been preset to give a view of the important
CORDIC block signals, and the Nios processor.

1 In build\dpd_nios\dpd-nios.v, you must set the IP_NO
parameter for the number of input data to test.

Getting Started in ModelSim

This section describes some basic steps to get you started running your
simulation with the ModelSim simulator.

Table 1. Generated Files for Simulation

File Extension Description

.mpf ModelSim Project file. This file is created if SOPC Builder finds
the ModelSim path. If you can open this file in ModelSim, the
directories and paths are set for simulation and the simulation
macros are initialized (see Table 2).

.do ModelSim macro execution scripts.

The setup_sim.do file initializes the simulation macros (see
Table 2).

The wave_presets.do file holds a list of default signals that are
displayed in the waveform window.

The virtuals.do file sets up a virtual signal that translates Nios
operation codes (opcodes) into instructions, allowing you to
view assemply instructions during simulation.

Table 2. ModelSim Simulation Macros

Macro Description

s Recompiles the complete design and reloads into the
ModelSim work library for simulation. This macro resets the
entire simulation.

c Recompiles all software and regenerates the NDK.

w Opens the ModelSim waveform window and loads the
signals defined in wave_presets.do.
Altera Corporation 29
Preliminary

Digital Predistortion Reference Design Design Walkthrough
To begin simulating using the SOPC Builder generated ModelSim project
file (.mpf) located in the simulation directory, perform the following
steps:

1. Click Run ModelSim, to run the ModelSim software and
automatically invoke the setup_sim.do.

2. Execute the s macro to load and compile the design.

3. Execute the w macro to display the ModelSim waveform window.

The signals shown are only a starting-point for your analysis of the
system behavior. You can add or remove signals by using the options in
the view menu in the main ModelSim window.

Analyzing the Simulation Results

After you have loaded and compiled the design, you can simulate and
analyze the operation of the DPD system with the Nios processor. To start
a simulation use commands in the run menu in the main ModelSim
window, or execute the run command at the ModelSim prompt. For
example type the following command to run the simulation through
100 µs:

run 100 us

Figure 17 shows a ModelSim wave window that shows a single Nios
CORDIC frame. The waveforms between the two yellow markers
represents a single CORDIC frame, and in this instance, shows the Nios
data master issuing Avalon read and writes to memory and peripherals.
The first two reads after the first marker represent the synchronization to
the CORDIC block.

1 The Nios data master handles reading and writing data to and
from memory and memory-mapped peripherals in the Nios
subsystem. The read, write, address, and byte-enable signals
operate according to the Avalon bus specification.
30 Altera Corporation
Preliminary

Design Walkthrough Digital Predistortion Reference Design
Figure 17. ModelSim Waveform Window

The testbench is self-checking. It generates output to the screen and the
build\dpd_nios\dpd_nios_sim\log_op_err.txt log file, to indicate the
outcome of the simulation.

Synthesize the Design

Before you synthesize the reference design, you must first generate the
project (see “Generate the System” on page 27). To synthesize the design,
perform the following steps:

1. Open the Quartus II software.

2. Choose Open Project (File menu).

3. Βrowse to the installed predistort/build/dpd_nios/ directory.
Choose the dpd_nios_top.quartus project file.

4. Choose Settings (Assignment menu).

5. Under category expand Timing Settings and choose Clocks, to set
the synthesis constrained clock frequency. You can either set the
same frequency for all clocks in the system or constrain individual
clocks. The following three clock domains are in the system and all
are assumed to be synchronous:

● clk_forward—predistorter clock domain
● clk_nios—Nios clock domain
● clk_cordic—CORDIC clock domain

1 For the reference design assume that the input is four UMTS
channels, i.e, all clock frequencies are the same.
Altera Corporation 31
Preliminary

