
Toolflow for ARM-Based
Embedded Processor PLDs

December 2000, ver. 1 Application Note
Introduction The Excalibur embedded processor devices achieve a new level of system
integration from the inclusion of an embedded processor system within a
programmable logic device (PLD). Such an integration increases the
demands placed on the system development tools and the resulting
programming files. To utilize the Excalibur embedded processor device
fully, both programmable logic development tools and embedded
software development tools are used.

This document describes the tools available to designers using ARM-
based embedded processor devices, and explains how to use the tools to
generate programming files.

� There are two mechanisms for programming ARM-based
embedded processor PLDs: the first facilitates booting from an
external flash device; the second is used to boot from an external
configuration device, e.g. an EPC2 serial EPROM. The tools
described in this document are used to build the various types of
programming images for both mechanisms.

Preliminary
Information

An Excalibur-based system contains three sections, as follows:

� The digital logic design of the PLD
� The configuration of the embedded processor stripe (see the

Excalibur hardware manual for detailed configuration requirements)
� The embedded software application.

The development of digital logic for the programmable logic section of the
devices follows the same flow as the design for Altera APEX devices.
Typically, the Altera Quartus software development tools are used in
conjunction with third-party synthesis tools and third-party hardware
simulation tools. Designs can be entered in VHDL or Verilog; or
schematic-based designs can be used. A variety of simulation models are
provided, depending on the stage of design development reached.
Altera Corporation 1

A-AN-136-01

Toolflow for ARM-Based Embedded Processor PLDs Preliminary Information
The first tool in the tool chain is the Altera® Excalibur™ MegaWizard®
Plug-In. This is a graphical user interface (GUI) utility, which allows
designers to create a system build descriptor (SBD, or .sbd) file which
describes the set-up of the device, including the following characteristics:

� Whether the device boots from an external configuration device or an
external flash device

� Which device peripherals are enabled
� Peripheral input-voltage levels
� Peripheral output configurations
� Processor endianness
� Whether the bridges between the stripe and the PLD are used
� The frequencies of the phased-lock loops (PLLs)
� The device memory map

The .sbd file produced by the Altera MegaWizard Plug-In is the basis for
files which are used to configure the hardware and software design flow.
The files produced are as follows:

� .v or .vhd files containing instantiations of the embedded processor
and dual-port RAM blocks and header files, as follows:
– For Verilog—module instance containing stripe structural code,

plus an include file
– For VHDL—entity instance containing stripe structural code,

plus .vhd package, plus additional template component
declaration (VHDL 87 only)

� A C header file containing definitions of the memory map

Every time the Excalibur MegaWizard Plug-In updates the SBD file, it
automatically recreates these files.

Figures 1 shows the MegaWizard process.
2 Altera Corporation

Preliminary Information Toolflow for ARM-Based Embedded Processor PLDs
Figure 1. Excalibur MegaWizard Process

Configuration from an External Source

Figure 2 on page 4 shows the tool flow for configuration from an external
configuration device, via passive configuration schemes.

GUI

HDL/H
Generator System Build

Descriptor File
(.sbd)

C/C++
header file

(.h)

Excalibur
MegaWizard

Plug-In

Stripe
declaration

file and
header file

(.v or .vhd)

HDL Template
Altera Corporation 3

Toolflow for ARM-Based Embedded Processor PLDs Preliminary Information
Figure 2. Configuration by Passive-Serial or Passive-Parallel Configuration Schemes

Excalibur
MegaWizard

Plug-In

Software
Design Entry

.sbd
System Build

Descriptor
File

.h

.h, .c, .cpp

Software build
environment

Fitter

.psof

Intel .hex

MakeProgFile

.pof, .sof

Hardware
Design Entry

HDL
template

Synthesize
(after satisfactory

simulation)

.edf

.v or .vhd
stripe

declaration

.v or .vhd
chip design
4 Altera Corporation

Preliminary Information Toolflow for ARM-Based Embedded Processor PLDs
When a device is configured using a passive-serial or passive-parallel
configuration scheme, the required output at the end of a successful
hardware compilation is one or more of the following file types: .pof, .sof,
.rbf, .ttf, .hexout.

The following steps explain how to create a programming file of the
hardware design:

1. Run the Excalibur MegaWizard Plug-in to configure the embedded
logic.

2. Create and synthesize the RTL, using either the Quartus II™ software
or third-party hardware development tools.

3. Specify a software image (in Intel .hex format) to be merged into the
programming file at the fitting stage.

The Quartus II software always produces a .pof and a .sof file. Optionally,
.rbf, .ttf, and .hexout files are also produced.

To generate a configuration file for the software design, proceed as
follows:

1. Create an Intel .hex file for the software image using either the
compiler/linker provided with the Quartus II software in software
mode or a preferred utility.

If the .hex file does not specify an entry point, it is assumed to be the
first address in the .hex file.

� The ARM FromElf utility does not specify an entry point in
the .hex file, even if it is non-zero, so the first address is
always used.

2. Use the Quartus II MakeProgFile command-line utility to merge the
.hex file, the .sbd file, and the partial SRAM object file (.psof) PLD
image into the appropriate types of programming file.

In software mode, you can specify the .psof PLD image to be merged
with the .hex file. The Quartus II software then produces .pof, .sof,
.rbf, and .ttf files.

After the programming file has been loaded into the device, and at the
instant when execution is transferred to the user’s code, the device is
configured as follows:
Altera Corporation 5

Toolflow for ARM-Based Embedded Processor PLDs Preliminary Information
� The device registers have been initialized to the configuration
requested in the Excalibur MegaWizard Plug-In

� If no application has been loaded, the processor is held in reset; if an
application is present, the processor is released from reset with the
following characteristics:
– The embedded processor is in supervisor (SVC) mode
– IRQ and FIQ are disabled; the status flags are undefined
– The processor is executing ARM code
– The instruction and data caches, and the MMU are disabled; the

cache contents are invalid
– The embedded processor’s registers are undefined

� The watchdog timer is running, unless DEBUG_EN is asserted. See the
ARM-Based Embedded Processor PLDs data sheet for more information
about this

Configuration from Flash Via the Altera Bootloader

Altera provides a bootloader for use when booting from external flash
memory. The bootloader initializes the device registers according to the
MegaWizard output, including setting up the memory map of the device;
and then loads the software into RAM. It resets the watchdog timer and
finally sets the endianness of the processor, before passing control to the
user's code.

Figure 3 on page 7 shows the tool flow for configuration from flash
memory.
6 Altera Corporation

Preliminary Information Toolflow for ARM-Based Embedded Processor PLDs
Figure 3. Configuration from Flash

Excalibur
MegaWizard

Plug-In

Hardware
Design Entry

Software
Design Entry

HDL
template

.h

.v or .vhd
chip design

.h, .c, .cpp

Software Build
Environment

Synthesize
(after satisfactory

simulation)

.edf

Fitter

Intel .hex

MakeProgFile

.sbi

.o

.hexout

Link and
convert object

file to .hex

Loader
Library

.sbd
System Build

Descriptor
File.v or .vhd

stripe
declaration
Altera Corporation 7

Toolflow for ARM-Based Embedded Processor PLDs Preliminary Information
When a device is configured using the Altera flash bootloader, the
required output at the end of a successful design compilation is an Intel
.hex file.

To run a hardware compilation and produce a .hex file for configuring a
device from flash memory, proceed as follows:

1. Run the Excalibur MegaWizard Plug-In to configure the embedded
logic.

2. Create an Intel .hex file for the software image using either the
compiler/linker provided with the Quartus II software in software
mode or a preferred utility.

If the .hex file does not contain an entry point, it is assumed to be the
first address in the .hex file.

� The ARM FromElf utility does not specify an entry point in
the .hex file, even if it is non-zero, so the first address is
always used.

3. Use the Quartus II software to compile the design, generating a
slave binary image (.sbi) file.

4. Use the MakeProgFile command-line utility to merge the .hex file,
the .sbd file, and the .sbi PLD image into an object file.

5. Using Armlink or a similar utility, link the object file produced by
MakeProgFile with the boot library boot.a to produce an executable
and linkable format (.elf) file.

6. Use FromElf or a similar application to create a .hex programming
file.

� Steps 4 to 6 can be placed into a makefile to be called from the
Quartus command line after the build.
8 Altera Corporation

Toolflow for ARM-Based Embedded Processor PLDs Preliminary Information
Altera, Excalibur, MegaCore, and Quartus are trademarks and/or service marks of Altera Corporation in the
United States and other countries. Altera acknowledges the trademarks of other organizations for their
respective products or services mentioned in this document. Altera products are protected under numerous
U.S. and foreign patents and pending applications, maskwork rights, and copyrights. Altera warrants
performance of its semiconductor products to current specifications in accordance with Altera’s standard
warranty, but reserves the right to make changes to any products and services at any time without notice.
Altera assumes no responsibility or liability arising out of the application or use of any information, product,
or service described herein except as expressly agreed to in writing by Altera Corporation.
Altera customers are advised to obtain the latest version of device specifications before
relying on any published information and before placing orders for products or services.

Copyright  2001 Altera Corporation. All rights reserved.

101 Innovation Drive
San Jose, CA 95134
(408) 544-7000
http://www.altera.com
Applications Hotline:
(800) 800-EPLD
Customer Marketing:
(408) 544-7104
Literature Services:
lit_req@altera.com

After the programming file has been loaded into the device, and at the
instant when execution is transferred to the user’s code, the device is
configured as follows:

� The device registers have been initialized to the configuration
requested in the Excalibur MegaWizard Plug-in

� The embedded processor is in SVC mode; in addition:
– IRQ and FIQ are disabled; the status flags are undefined
– The processor is executing ARM code
– The instruction and data caches, and the MMU are disabled; the

cache contents are invalid
– The embedded processor’s registers are undefined

� The watchdog timer is running, unless DEBUG_EN is asserted. See the
ARM-Based Embedded Processor PLDs data sheet for more information
about this.

� The watchdog is reset immediately before execution is
transferred to the user’s code.
9 Altera Corporation

Printed on Recycled Paper.

	Introduction
	Configuration from an External Source
	Configuration from Flash Via the Altera Bootloader

