
10Analyzing and Debugging Designs with System
Console

2014.06.30

QII53028 Subscribe Send Feedback

About System Console
System Console provides visibility into your system. This visibility allows faster debugging and time to
market for your FPGA. System Console is both a platform and an application for interacting with the
debug-enabled portions of your design.

You can perform the following high-level tasks with SystemConsole and tools built on top of SystemConsole:

• Perform board bring-up, with both finalized and partially complete designs.
• Remote debug from anywhere with internet access.
• Automate complex run-time verification solutions through scripting across multiple devices in your

system.
• Test serial links with point-and-click configuration tuning in the Transceiver Toolkit.
• Debug memory interfaces with the External Memory Interface Toolkit.
• Integrate your own debug IP into the debugging platform.

Related Information
System Console Online Training

Use Cases for System Console
You can leverage System Console for multiple debugging use-cases. You can access tutorials, application
notes, and design examples to learn more about debugging with System Console.

Related Information

• Board Bring-Up with System Console Tutorial on page 10-8

• Debugging Transceiver Links Documentation

• External Memory Interface Documentation

• Application Note 693: Remote Hardware Debugging over TCP/IP for Altera SoC

• Application Note 624: Debugging with System Console over TCP/IP

ISO
9001:2008
Registered

© 2014 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words
and logos are trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other
words and logos identified as trademarks or service marks are the property of their respective holders as described at
www.altera.com/common/legal.html. Altera warrants performance of its semiconductor products to current specifications in accordance with
Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes
no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly
agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.

www.altera.com

101 Innovation Drive, San Jose, CA 95134

https://www.altera.com/servlets/subscriptions/alert?id=QII53028
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(QII53028%202014.06.30)%20Analyzing%20and%20Debugging%20Designs%20with%20System%20Console&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
http://www.altera.com/education/training/courses/OEMB1117
http://www.altera.com/literature/hb/qts/qts_qii53029.pdf
http://www.altera.com/literature/hb/external-memory/emi.pdf
http://www.altera.com/literature/an/an_693.pdf
http://www.altera.com/literature/an/an624.pdf
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

Using Debug Agents
System Console runs on your host computer and communicates with your running design through debug
agents. These debug agents are soft-logic added to particular IP cores to enable debug communication with
the host computer. Some debug agents have this single-purpose function, while others such as the Nios II
processor with debug enabled, are for both debugging the hardware in your design as well as doing software
debug of the code running on the Nios II processor.

By including debugging IP cores in your design, you can make large portions of a design debug-accessible.
The IP allows reading of memory and altering peripheral registers from a host computer. For example,
adding a JTAG to Avalon Master Bridge instance to a Qsys system enables you to read and write to memory-
mapped slaves connected to the bridge. Other types of debug agents are also available.

You can instantiate debug IP cores using the IP Catalog.

The following IP cores in the IP Catalog do not support VHDL simulation generation in the current
version of the Quartus II software.

• JTAG Debug Link

Note:

• SLD Hub Controller System
• USB Debug Link

System Console Flow
1. Add required component(s) to Qsys.
2. Generate and compile design.
3. Connect board and program FPGA.
4. Start System Console.
5. Locate and open service path.
6. Perform desired operation(s) with service.
7. Close the service.

Application and Interfaces
Use the Tcl scripting language to interact with your running design in both the graphical and command-line
interface modes. The System Console GUI provides additional panes to make important design information
available.

System Console understands the particulars of the communication channel because of design information
embedded in the programmable SRAM Object File (.sof). When System Console launches from the Quartus
II software or Qsys while your design is open, any existing programmable file is automatically found and
linked to the detected running device if they are compatible. In more complicated systems, the designs and
devices may need to be linked manually.

Related Information

• API

Analyzing and Debugging Designs with System ConsoleAltera Corporation

Send Feedback

QII53028
Using Debug Agents10-2 2014.06.30

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20System%20Console%20(QII53028%202014.06.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Quartus II Scripting Reference Manual
Information about Tcl scripting support

• Introduction to Tcl Online Training

Starting System Console
There are several different ways to launch System Console.

Starting System Console from Quartus II

• Click Tools > System Debugging Tools > System Console.

Starting System Console from Qsys

• Click Tools > System Console.

Starting System Console from Nios II Command Shell

1. On the Windows Start menu, click All Programs > Altera > Nios II EDS <version> > Nios II <version>
Command Shell.

2. Type the following command:

system-console

To get help information, type the command system-console --helpNote:

Customizing Startup
You can customize your System Console environment by adding commands to the system_console_rc
configuration file. You can locate this file in the following location:

• <$HOME>/system_console/system_console_rc.tcl, the file in this location is known as the user configuration
file, which only affects the owner of that home directory.

You can alternatively specify your own design specific startup configuration file by using the command-line
argument --rc_script=<path_to_script>, when you launch System Console from the Nios II command
shell.

You can use the system_console_rc.tcl file in combination with your custom rc_script.tcl file. In this capacity,
the system_console_rc.tcl file performs actions that System Console always needs and the local rc_script.tcl
file performs actions for particular experiments.

On startup, System Console automatically runs any Tcl commands in these files. The commands in the
system_console_rc.tcl file run first, then the commands in the rc_script.tcl file run.

Command-Line Arguments
The --cli command-line argument runs System Console in command-line mode.

The --project_dir=<project dir> command-line argument directs System Console to the location of
your hardware project. Ensure that you are working with the project you intend—the JTAG chain details
and other information depend on the specific project.

The --script=<your script>.tcl command-line argument directs SystemConsole to run yourTcl script.

Altera CorporationAnalyzing and Debugging Designs with System Console

Send Feedback

10-3Starting System Console
QII53028
2014.06.30

http://www.altera.com/literature/manual/TclScriptRefMnl.pdf
http://www.altera.com/education/training/courses/ODSW1180
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20System%20Console%20(QII53028%202014.06.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The System Console GUI
The System Console GUI consists of a main window with four separate panes:

• The SystemExplorer pane displays the hierarchy of the System Console virtual file system in your design,
including board connections, devices, designs, and scripts.

• The Tools pane displays the Transceiver Toolkit, GDB Server Control Panel, and Bus Analyzer. Click
the Tools menu to launch the applications.

• TheTclConsole is where the design interactions take place. Common actions are sourcing scripts, writing
procedures, and using the System Console API.

• TheMessages pane displays status, warning, and errormessages regarding connections and debug actions.

Figure 10-1: System Console GUI

Related Information
System Console Online Help

System Explorer Pane
The System Explorer pane displays the virtual file system for all connected debugging components. This
virtual file system contains the following information:

• The devices folder contains information about each device connected to System Console.

Analyzing and Debugging Designs with System ConsoleAltera Corporation

Send Feedback

QII53028
The System Console GUI10-4 2014.06.30

http://quartushelp.altera.com/current/mergedProjects/program/syscon/syscon_about.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20System%20Console%20(QII53028%202014.06.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• The scripts folder stores scripts for easy execution.
• The connections folder displays information about the board connections which are visible to System

Console, such as USB Blaster. Multiple connections are possible.
• The designs folder displays information about Quartus II project designs connected to System Console.

Within the devices folder is a folder for each device currently connected to System Console. Each device
folder contains a (link) folder and sometimes contains a (files) folder.

The (link) folder shows debug agents (and other hardware) that System Console is able to access. The (files)
folder is a copy of the tree under the designs folder for the project that is currently linked to this device.

Figure 10-2: System Explorer Pane

• The figure above shows that under the devices folder there is the EP4SGX230 folder which contains a
(link) folder. The (link) folder contains a JTAG folder. The JTAG folder contains folders that describe
the debug pipes (i.e. JTAG, USB, Ethernet, etc) and agents that are connected to the EP4SGX230 device
via a JTAG connection.

• The (files) folder contains information about the design files loaded from the Quartus II project for the
device.

• Folders that have a context menu available show a small context menu icon. Right-click these folders to
view a context menu. For example, the connections folder in Figure 10-2 shows a context menu icon.

• Folders that have informational messages available display a small informational message icon. Hover
over these folders to see the informational message. For example, the scripts folder in Figure 10-2 shows
an informational message icon.

• Debug agents that sense the clock and reset state of the target show a informational or error message
with a clock status icon. The icon indicates whether the clock is running (info, green), stopped (error,
red), or running but in reset (error, red). For example, the trace_system_jtag_link.h2t folder in Figure
10-2 has a running clock.

Altera CorporationAnalyzing and Debugging Designs with System Console

Send Feedback

10-5System Explorer Pane
QII53028
2014.06.30

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20System%20Console%20(QII53028%202014.06.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Interactive Help
Typing help help into the Tcl Console lists all available commands. Typing help <command name>
provides the syntax of commands. System Console provides command completion if you type the beginning
letters of a command and then press the Tab key.

Services
System Console services allow you to access different parts of your running design. For example, the master
service provides access to memory-mapped slave interfaces and the processor service provides access to
fine-grained processor controls. The services do not intermix, but a single IP core can provide multiple
services. For example, the Nios II processor contains a debug core. It is a processor and it has a
memory-mapped master interface that can connect to slaves. The master service can access the
memory-mapped slaves that connect to the Nios II processor. Also, the processor service can be used to do
software debugging.

Common Services
Each common service exposes a separate API. By adding the appropriate debug agent to your design, System
Console services can use the associated capabilities in a running design.

Table 10-1: Common Services for System Console

Debug Agent Providing ServiceFunctionService

• Nios II with debug
• JTAG to Avalon Master Bridge
• USB Debug Master

Access memory-mapped (Avalon-MM or
AXI) slaves connected to themaster interface.

master

• Nios II with debug
• JTAG to Avalon Master Bridge

Allows the host to access a single slave
without needing to know the location of the
slave in the host's memory map. Any slave
that is accessible to a System Console master
can provide this service.

slave

Nios II with debug• Start, stop, or step the processor.
• Read/write processor registers.

processor

Related Information

• System Console Examples on page 10-8

• API

Locating Available Services
SystemConsole uses a virtual file system to organize the available services, which is similar to the /dev location
on Linux systems. Board connection, device type, and IP names are all part of a service path. Instances of

Analyzing and Debugging Designs with System ConsoleAltera Corporation

Send Feedback

QII53028
Interactive Help10-6 2014.06.30

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20System%20Console%20(QII53028%202014.06.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

services are referred to by their unique service path in the file system. You can retrieve service paths for a
particular service with the command get_service_paths <service-type>.

Locating a Service Path Example

#We are interested in master services.
set service_type "master"

#Get all the paths as a list.
set master_service_paths [get_service_paths $service_type]

#We are interested in the first service in the list.
set master_index 0

#The path of the first master.
set master_path [lindex $master_service_paths $master_index]

#Or condense the above statements into one statement:
set master_path [lindex [get_service_paths master] 0]

System Console commands require service paths to identify the service instance you want to access. The
paths for different components can change between runs of the tool and between versions. Use
get_service_paths to obtain service paths rather than hard coding them into your Tcl scripts.

The string values of service paths change with different releases of the tool, so you should not infer meaning
from the actual strings within the service path. Use marker_node_info to get information from the path.

System Console automatically discovers most services at startup. System Console automatically scans for all
JTAG and USB-based service instances and retrieves their service paths. System Console does not automat-
ically discover some services, such as TCP/IP. Use add_service to inform System Console about those
services.

Marker_node_info Example

You can also use the marker_node_info command to get information about the discovered services so you
can choose the right one.

foreach m [get_service_paths master] {
 array set minfo [marker_node_info $m]
 if {[string match {*myhpath} $minfo(full_hpath)]} {
 set master_path $m
 break
 }
}

Opening and Closing Services
After you have a service path to a particular service instance, you can access the service for use.

The claim_service command tells System Console to start using a particular service instance. The
claim_service command claims a service instance for exclusive use.

Opening a Service Example

set service_type "master"
set claim_path [claim_service $service_type $master_path mylib];#Claims service.

You can pass additional arguments to the claim_service command to direct System Console to start
accessing a particular portion of a service instance. For example, if you use the master service to access

Altera CorporationAnalyzing and Debugging Designs with System Console

Send Feedback

10-7Opening and Closing Services
QII53028
2014.06.30

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20System%20Console%20(QII53028%202014.06.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

memory, then use claim_service to only access the address space between 0x0 and 0x1000. SystemConsole
then allows other users to access other memory ranges, and denies access to the claimed memory range. The
claim_service command returns a newly created service path that you can use to access your claimed
resources.

You can access a service after you open it.When you finish accessing a service instance, use the close_service
command to direct System Console to make this resource available to other users.

Closing a Service Example

close_service master $claim_path; #Closes the service.

System Console Examples
Altera provides examples for performing board bring-up, creating a simple dashboard, and programming
a Nios II processor. The System_Console.zip file contains design files for the board bring-up example. The
Nios II Ethernet Standard .zip files contain the design files for the Nios II processor example.

The instructions for these examples assume that you are familiar with the Quartus II software, Tcl
commands, and Qsys.

Note:

Related Information
On-Chip Debugging Design Examples Website
Contains the design files for the example designs that you can download.

Board Bring-Up with System Console Tutorial
You can perform low-level hardware debugging ofQsys systemswith SystemConsole. You can debug systems
that include IP cores instantiated in your Qsys system or perform initial bring-up of your PCB. This board
bring-up tutorial uses a Nios II Embedded Evaluation Kit (NEEK) board and USB cable. If you have a
different development kit, you need to change the device and pin assignments to match your board and then
recompile the design.

Related Information

• Use Cases for System Console on page 10-1

• Faster Board Bring-Up with System Console Demo Video

Board Bring-Up Flow
1. Set up the board bring-up example.
2. Verify clock and reset signals.
3. Verify memory and other peripheral interfaces.

Analyzing and Debugging Designs with System ConsoleAltera Corporation

Send Feedback

QII53028
System Console Examples10-8 2014.06.30

http://www.altera.com/support/examples/on-chip-debugging/on-chip-debugging.html
http://www.altera.com/products/software/quartus-ii/subscription-edition/qsys/systems/qts-systems-console.html?GSA_pos=7&WT.oss_r=1&WT.oss=system%20console%20video
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20System%20Console%20(QII53028%202014.06.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Qsys Modules
Figure 10-3: Qsys Modules for Board Bring-up Example

The Qsys design for this example includes the following modules:

• JTAG to Avalon Master Bridge—Provides System Console host access to the memory-mapped IP in the
design via the JTAG interface.

• On-chip memory—Simplest type of memory for use in an FPGA-based embedded system. The memory
is implemented on the FPGA; consequently, external connections on the circuit board are not necessary.

• Parallel I/O (PIO) module—Provides a memory-mapped interface for sampling and driving general I/O
ports.

• ChecksumAccelerator—Calculates the checksumof a data buffer inmemory. TheChecksumAccelerator
consists of the following:

• Checksum Calculator (checksum_transform.v)
• Read Master (slave.v)
• Checksum Controller (latency_aware_read_master.v)

Checksum Accelerator Functionality
The base address of the memory buffer and data length is passed to the Checksum Controller from a
memory-mapped master. The Read Master continuously reads data from memory and passes the data to
the Checksum Calculator. When the checksum calculations are complete, the Checksum Calculator issues
a valid signal along with the checksum result to the Checksum Controller. The Checksum Controller sets
the DONE bit in the status register and also asserts the interrupt signal. You should only read the result from
the Checksum Controller when the DONE bit and interrupt signal are asserted.

Setting Up the Board Bring-Up Design Example
To load the design example into the Quartus II software and program your device, follow these steps:

1. Unzip the System_Console.zip file to your local hard drive.
2. Click File > Open Project and select Systemconsole_design_example.qpf with the Quartus II software.
3. Change the device and pin assignments (LED, clock, and reset pins) in the Systemconsole_design_

example.qsf file to match your board.
4. Click Processing > Start Compilation
5. To Program your device, follow these steps:

Altera CorporationAnalyzing and Debugging Designs with System Console

Send Feedback

10-9Qsys Modules
QII53028
2014.06.30

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20System%20Console%20(QII53028%202014.06.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Click Tools >Programmer.a.
b. Click Hardware Setup.
c. Click the Hardware Settings tab.
d. Under Currently selected hardware, click USB-Blaster, and click Close.

If you do not see the USB-Blaster option, then your device was not detected. Verify that the
USB-Blaster driver is installed, your board is powered on, and the USB cable is intact.

Note:

This design example has been validated using a USB-Blaster cable. If you do not have a USB-Blaster
cable and you are using a different cable type, then select your cable from the Currently selected
hardware options.

e. Click Auto Detect, and then select your device.
f. Double-click your device under File.
g. Browse to your project folder and click Systemconsole_design_example.sof in the subdirectory

output_files.
h. Turn on the Program/Configure option.
i. Click Start.
j. Close the Programmer.

6. Click Tools > System Debugging Tools > System Console.

Related Information
System_Console.zip file
Contains the design files for this tutorial.

Verifying Clock and Reset Signals
You can use the SystemExplorer pane to verify clock and reset signals. Open the appropriate node and check
for either a green clock icon or a red clock icon.

Related Information
System Explorer Pane on page 10-4

Verifying Memory and Other Peripheral Interfaces
The Avalon-MM service accesses memory-mapped slaves via a suitable Avalon-MM master, which can be
controlled by the host. You can use Tcl commands to read andwrite tomemorywith amaster service.Master
services are provided by System Console master components such as the JTAG Avalon master.

Locating and Opening the Master Service

#Select the master service type and check for available service paths.
set service_paths [get_service_paths master]

#Set the master service path.
set master_service_path [lindex $service_paths 0]

#Open the master service.
set claim_path [claim_service master $master_service_path mylib]

Avalon-MM Slaves
The Address Map tab shows the address range for every Qsys component. The Avalon-MM master
communicates with slaves using these addresses.

Analyzing and Debugging Designs with System ConsoleAltera Corporation

Send Feedback

QII53028
Verifying Clock and Reset Signals10-10 2014.06.30

http://www.altera.com/support/examples/download/System_Console.zip
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20System%20Console%20(QII53028%202014.06.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The register maps for all Altera components are in their respective Data Sheets.

Figure 10-4: Address Map

Related Information
Data Sheets Website

Testing the PIO component
In this example design, the PIO connects to the LEDs of the board. Test if this component is operating
properly and the LEDs are connected, by driving the outputs with the Avalon-MM master.

Figure 10-5: Register Map for the PIO Core

#Write the driver output values for the Parallel I/O component.
set offset 0x0; #Register address offset.
set value 0x7; #Only set bits 0, 1, and 2.
master_write_8 $claim_path $offset $value

#Read back the register value.
set offset 0x0
set count 0x1
master_read_8 $claim_path $offset $count

master_write_8 $claim_path 0x0 0x2; #Only set bit 1.

master_write_8 $claim_path 0x0 0xe; #Only set bits 1, 2, 3.

master_write_8 $claim_path 0x0 0x7; #Only set bits 0, 1, 2.

#Observe the LEDs turn on and off as you execute these Tcl commands.
#The LED is on if the register value is zero and off if the register value is one.

Altera CorporationAnalyzing and Debugging Designs with System Console

Send Feedback

10-11Testing the PIO component
QII53028
2014.06.30

http://www.altera.com/literature/lit-ds.jsp
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20System%20Console%20(QII53028%202014.06.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

#LED 0, LED 1, and LED 2 connect to the PIO.
#LED 3 connects to the interrupt signal of the CheckSum Accelerator.

Testing On-chip Memory
Test the memory with a recursive function that writes to incrementing memory addresses.

#Load the design example utility procedures for writing to memory.
source set_memory_values.tcl

#Write to the on-chip memory.
set base_address 0x80
set write_length 0x80
set value 0x5a5a5a5a
fill_memory $claim_path $base_address $write_length $value

#Verify the memory was written correctly.
#This utility proc returns 0 if the memory range is not uniform with this value.
verify_memory $claim_path $base_address $write_length $value

#Check that the memory is re-initialized when reset.
#Trigger reset then observe verify_memory returns 0.
set jtag_debug_path [lindex [get_service_paths jtag_debug] 0]
set claim_jtag_debug_path [claim_service jtag_debug $jtag_debug_path mylib]
jtag_debug_reset_system $claim_jtag_debug_path; #Reset the connected on-chip memory
#peripheral.
close_service jtag_debug $claim_jtag_debug_path
verify_memory $claim_path $base_address $write_length $value

#The on-chip memory component was parameterized to re-initialized to 0 on reset.
#Check the actual value.
master_read_8 $claim_path 0x0 0x1

Testing the Checksum Accelerator
The Checksum Accelerator calculates the checksum of a data buffer in memory. It calculates the value for
a specified memory buffer, sets the DONE bit in the status register, and asserts the interrupt signal. You
should only read the result from the controller when both the DONE bit and the interrupt signal are asserted.
The host should assert the interrupt enable control bit in order to check the interrupt signal.

Figure 10-6: Register Map for Checksum Component

Analyzing and Debugging Designs with System ConsoleAltera Corporation

Send Feedback

QII53028
Testing On-chip Memory10-12 2014.06.30

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20System%20Console%20(QII53028%202014.06.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. #Pass the base address of the memory buffer Checksum Accelerator.
set base_address 0x20
set offset 4
set address_reg [expr {$base_address + $offset}]
set memory_address 0x80
master_write_32 $claim_path $address_reg $memory_address

#Pass the memory buffer to the Checksum Accelerator.
set length_reg [expr {$base_address + 12}]
set length 0x20
master_write_32 $claim_path $length_reg $length

#Write clear to status and control registers.
#Status register:
set status_reg $base_address
master_write_32 $claim_path $status_reg 0x0
#Control register:
set clear 0x1
set control_reg [expr {$base_address + 24}]
master_write_32 $claim_path $control_reg $clear

#Write GO to the control register.
set go 0x8
master_write_32 $claim_path $control_reg $go

#Cross check if the checksum DONE bit is set.
master_read_32 $claim_path $status_reg 0x1

#Is the DONE bit set?
#If yes, check the result and you are finished with the board bring-up design example.
set result_reg [expr {$base_address + 28}]
master_read_16 $claim_path $result_reg 0x1

2. If the result is zero and the JTAG chain works properly, the clock and reset signals work properly, and
the memory works properly, then the problem is the Checksum Accelerator component.

#Confirm if the DONE bit in the status register (bit 0)
#and interrupt signal are asserted.
#Status register:
master_read_32 $claim_path $status_reg 0x1
#Check DONE bit should return a one.

#Enable interrupt and go:
set interrupt_and_go 0x18
master_write_32 $claim_path $control_reg $interrupt_and_go

3. Check the Control Enable to see the interrupt signal. LED 3 (MSB) should be off. This indicates the
interrupt signal is asserted.

4. You have narrrowed down the problem to the data path. View the RTL to check the data path.
5. Open the Checksum_transform.v file from your project folder.

• <unzip dir>/System_Console/ip/checksum_accelerator/checksum_accelerator.v

6. Notice that the data_out signal is grounded in Figure 10-7 (uncommented line 87 and comment line
88). Fix the problem.

7. Save the file and regenerate the Qsys system.
8. Re-compile the design and reprogram your device.
9. Redo the above steps, starting with Verifying Memory and Other Peripheral Interfaces on page 10-10

or run the Tcl script included with this design example.

source set_memory_and_run_checksum.tcl

Altera CorporationAnalyzing and Debugging Designs with System Console

Send Feedback

10-13Testing the Checksum Accelerator
QII53028
2014.06.30

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20System%20Console%20(QII53028%202014.06.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 10-7: Checksum.v File

Dashboard Service
The dashboard service enables you to construct GUIs for visualizing and interacting with debug data. The
dashboard service provides graphical widgets such as buttons and text fields. The dashboard is a graphical
pane for the layout of your widgets. Widgets can be set with data retrieved through other System Console
services. Similarly, widgets can leverage user input to act on debug logic in your design through services.

Properties

Widget properties can set information into the user interface and get information from the user interface.
Widgets have properties specific to their type. For example, the button property onClick performs an action
when the button is clicked. A label widget does not have the same property because it does not perform an
action when clicked. However, both the button and label widgets have the text property for the string they
display.

Layout

The dashboard service creates a widget hierarchy where the dashboard is at the top-level. The dashboard
service can implement group-type widgets that contain child widgets. Layout properties dictate layout
performed by a parent on its children.

An example layout property is expandableX: if true, the widget expands horizontally to encompass all the
space available to it. Another property is visible: a widget is only laid out when this property is true.

User Input

Some of the available widgets allow user interaction. For example, the textFieldwidget is a box that allows
you to type text. For this widget, the contents of the box are accessible through the text property. A Tcl
script can either get or set the contents of the field by accessing this property.

Callbacks

Somewidgets can performuser-specified actions, referred to as callbacks, upon certain events. The textField
widget has the onChange property, which is called anytime the text contents have changed. The button
widget has the onClick property, which is called when the button is clicked. These callbacks may update
widgets or interact with services based on the contents of the text field or the state of any other widget.

Related Information
Dashboard Commands on page 10-30

Analyzing and Debugging Designs with System ConsoleAltera Corporation

Send Feedback

QII53028
Dashboard Service10-14 2014.06.30

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20System%20Console%20(QII53028%202014.06.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Dashboard Example

Adding the Service

The dashboard is not initialized by default. You must add the service before it can be used.

set dash [add_service dashboard dashboard_example "Dashboard Example" "Tools/Example"]

Showing the Dashboard

Once instantiated, you must explicitly make the dashboard visible. Use the dashboard_set_property
command to modify the visible property of the root dashboard:

dashboard_set_property $dash self visible true

In this command, $dash represents the dashboard service. self is the name of the root dashboard widget.
visible is the property being set. true is the value to set. Executed as a single command, it causes the root
dashboard to be made visible.

Adding Widgets

Use the dashboard_add command to add widgets:

set name "my_label"
set widget_type "label"
set parent "self"
dashboard_add $dash $name $widget_type $parent

The following commands add a label widget named "my_label" to the root dashboard. In the GUI, it appears
as the text "label." Change the text:

set content "Text to display goes here"
dashboard_set_property $dash $name text $content

This command sets the text property to that string. In the GUI, the displayed text changes to the new value.
Add one more label:

dashboard_add $dash my_label_2 label self
dashboard_set_property $dash my_label_2 text "Another label"

Notice the new label appears to the right of the first label. Cause the layout to put the label below instead:

dashboard_set_property $dash self itemsPerRow 1

Gathering Input

Incorporate user input into our dashboard:

set name "my_text_field"
set widget_type "textField"
set parent "self"
dashboard_add $dash $name $widget_type $parent

Altera CorporationAnalyzing and Debugging Designs with System Console

Send Feedback

10-15Dashboard Example
QII53028
2014.06.30

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20System%20Console%20(QII53028%202014.06.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The widget appears, but it is very small. Make the widget fill the horizontal space:

dashboard_set_property $dash my_text_field expandableX true

Now the text field is fully visible. Text can be typed into it once clicked. Type a sentence. Now, retrieve the
contents of the field:

set content [dashboard_get_property $dash my_text_field text]
puts $content

This prints the contents into the console.

Updating Widgets Upon User Events

The dashboard is significantly more useful when actions are performed without having to interactively type
Tcl. Use callbacks to accomplish this. Start by defining a procedure that updates the first label with the text
field contents:

proc update_my_label_with_my_text_field {dash} {
 set content [dashboard_get_property $dash my_text_field text]
 dashboard_set_property $dash my_label text $content
}

Run the update_my_label_with_my_text_field $dash command in the Tcl Console. Notice that the first
label nowmatches the text field contents.Have theupdate_my_label_with_my_text_field $dash command
called whenever the text field changes:

dashboard_set_property $dash my_text_field onChange "update_my_label_with_my_text_field $dash"

The onChange property is executed each time the text field changes. The effect is the first field changes to
match what is typed.

Buttons

Buttons can also be used to trigger actions. Create a button that changes the second label:

proc append_to_my_label_2 {dash suffix} {
 set old_text [dashboard_get_property $dash my_label_2 text]
 set new_text "${old_text}${suffix}"
 dashboard_set_property $dash my_label_2 text $new_text
}
set text_to_append ", and more"
dashboard_add $dash my_button button self
dashboard_set_property $dash my_button onClick [list append_to_my_label_2 $dash \
$text_to_append]

When the button is clicked, the second label has some text appended to it.

Groups

The property itemsPerRow dictates how widgets are laid out in a group. For more complicated layouts where
the number of widgets per row is different per row, nested groups should be used. Add a new group with
more widgets per row:

dashboard_add $dash my_inner_group group self
dashboard_set_property $dash my_inner_group itemsPerRow 2
dashboard_add $dash inner_button_1 button my_inner_group
dashboard_add $dash inner_button_2 button my_inner_group

Analyzing and Debugging Designs with System ConsoleAltera Corporation

Send Feedback

QII53028
Dashboard Example10-16 2014.06.30

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20System%20Console%20(QII53028%202014.06.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

There is now a row with a group of two buttons. The border with the group name can be removed to make
the nested group more seamless.

dashboard_set_property $dash inner_group title ""

The title property can be set to any other string to have the border and title text show up.

Tabs

GUIs do not require all the widgets to be visible at the same time. Tabs accomplish this.

dashboard_add $dash my_tabs tabbedGroup self
dashboard_set_property $dash my_tabs expandableX true
dashboard_add $dash my_tab_1 group my_tabs
dashboard_add $dash my_tab_2 group my_tabs
dashboard_add $dash tabbed_label_1 label my_tab_1
dashboard_add $dash tabbed_label_2 label my_tab_2
dashboard_set_property $dash tabbed_label_1 text "in the first tab"
dashboard_set_property $dash tabbed_label_2 text "in the second tab"

This adds a set of two tabs, each with a group containing a label. Clicking on the tabs changes the displayed
group/label.

Nios II Processor Example
This example programs the Nios II processor on your board to run the count binary software example
included in the Nios II installation. This is a simple program that uses an 8-bit variable to repeatedly count
from 0x00 to 0xFF. The output of this variable is displayed on the LEDs on your board. After programming
the Nios II processor, you use System Console processor commands to start and stop the processor.

To run this example, perform the following steps:

1. Download the Nios II Ethernet Standard Design Example for your board from the Altera website.
2. Create a folder to extract the design. For this example, use C:\Count_binary.
3. Unzip the Nios II Ethernet Standard Design Example into C:\Count_binary.
4. In a Nios II command shell, change to the directory of your new project.
5. Program your board. In a Nios II command shell, type the following:

nios2-configure-sof niosii_ethernet_standard_<board_version>.sof

6. Using Nios II Software Build Tools for Eclipse, create a new Nios II Application and BSP from Template
using the Count Binary template and targeting the Nios II Ethernet Standard Design Example.

7. To build the executable and linkable format (ELF) file (.elf) for this application, right-click the Count
Binary project and select Build Project.

8. Download the .elf file to your board by right-clicking Count Binary project and selecting Run As, Nios
II Hardware.

• The LEDs on your board provide a new light show.

9. Type the following:

system-console; #Start System Console.

#Set the processor service path to the Nios II processor.
set niosii_proc [lindex [get_service_paths processor] 0]

Altera CorporationAnalyzing and Debugging Designs with System Console

Send Feedback

10-17Nios II Processor Example
QII53028
2014.06.30

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20System%20Console%20(QII53028%202014.06.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

set claimed_proc [claim_service processor $niosii_proc mylib]; #Open the service.

processor_stop $claimed_proc; #Stop the processor.
#The LEDs on your board freeze.

processor_run $claimed_proc; #Start the processor.
#The LEDs on your board resume their previous activity.

processor_stop $claimed_proc; #Stop the processor.

close_service processor $claimed_proc; #Close the service.

• The processor_step, processor_set_register, and processor_get_register commands provide
additional control over the Nios II processor.

Related Information

• Processor Commands on page 10-39

• Nios II Ethernet Standard Design Example

• Nios II Software Build Tools User Guide

Additional Services

Design Service
You can use design service commands to work with Quartus II design information.

Load

When you open SystemConsole fromQuartus II orQsys, the current project's debug information is sourced
automatically if the .sof has been built. In other situations, you can load manually.

set sof_path [file join project_dir output_files project_name.sof]
set design [design_load $sof_path]

System Console is now aware that this particular .sof has been loaded.

Linking

Once a .sof is loaded, System Console automatically links design information to the connected device. The
resultant link persists and you can choose to unlink or reuse the link on an equivalent device with the same
.sof.

You can perform manual linking.

set device_index 0; # Device index for our target
set device [lindex [get_service_paths device] $device_index]
design_link $design $device

Manually linking fails if the target device does not match the design service.

Linking succeeds even if the .sof programmed to the target is not the same as the design .sof.

Analyzing and Debugging Designs with System ConsoleAltera Corporation

Send Feedback

QII53028
Additional Services10-18 2014.06.30

http://www.altera.com/support/examples/nios2/exm-net-std-de.html
http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20System%20Console%20(QII53028%202014.06.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information
Design Service Commands on page 10-26

Device Service
The device service supports device-level actions.

Programming

You can use the device service with Tcl scripting to perform device programming.

set device_index 0 ; #Device index for target
set device [lindex [get_service_paths device] $device_index]
set sof_path [file join project_path output_files project_name.sof]
device_download_sof $device $sof_path

To program, all you need are the device service path and the filesystem path to a .sof. Ensure that no service
(e.g. master service) are open on the target device or else the command fails. Afterwards, you may do the
following to check that the design linked to the device is the same one programmed:

device_get_design $device

Related Information
Device Commands on page 10-27

Monitor Service
The monitor service builds on top of the master service to allow reads of Avalon-MM slaves at a regular
interval. The service is fully software-based. The monitor service requires no extra soft-logic. This service
streamlines the logic to do interval reads, and it offers better performance than exercising the master service
manually for the reads.

Monitor Service Example

Start by determining a master and a memory address range that you are interested in polling continuously.

set master_index 0
set master [lindex [get_service_paths master] $master_index]
set address 0x2000
set bytes_to_read 100
set read_interval_ms 100

You can use the first master to read 100 bytes starting at address 0x2000 every 100 milliseconds. Open the
monitor service:

set monitor [lindex [get_service_paths monitor] 0]
set claimed_monitor [claim_service monitor $monitor mylib]

Notice that the master service was not opened. The monitor service opens the master service automatically.
Register the previously-defined address range and time interval with the monitor service:

monitor_add_range $claimed_monitor $master $address $bytes_to_read
monitor_set_interval $claimed_monitor $read_interval_ms

Altera CorporationAnalyzing and Debugging Designs with System Console

Send Feedback

10-19Device Service
QII53028
2014.06.30

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20System%20Console%20(QII53028%202014.06.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

More ranges can be added. Define what happens at each interval:

global monitor_data_buffer
set monitor_data_buffer [list]
proc store_data {monitor master address bytes_to_read} {
 global monitor_data_buffer
 set data [monitor_read_data $claimed_monitor $master $address $bytes_to_read]
 lappend monitor_data_buffer $data
}

The code example above, gathers the data and appends it with a global variable. monitor_read_data returns
the range of data polled from the running design as a list. In this example, data will be a 100-element list.
This list is then appended as a single element in the monitor_data_buffer global list. If this procedure takes
longer than the interval period, the monitor service may have to skip the next one or more calls to the
procedure. In this case, monitor_read_datawill return the latest data polled. Register this callback with the
opened monitor service:

set callback [list store_data $claimed_monitor $master $address $bytes_to_read]
monitor_set_callback $claimed_monitor $callback

Use the callback variable to call when the monitor finishes an interval. Start monitoring:

monitor_set_enabled $claimed_monitor 1

Immediately, the monitor reads the specified ranges from the device and invoke the callback at the specified
interval. Check the contents of monitor_data_buffer to verify this. To turn off the monitor, use 0 instead
of 1 in the above command.

Related Information
Monitor Commands on page 10-36

Bytestream Service
The bytestream service provides access to modules that produce or consume a stream of bytes. You can use
the bytestream service to communicate directly to the IP core that provides bytestream interfaces, such as
the Altera JTAG UART of the Avalon-ST JTAG interface.

Bytestream Service Example

The following code finds the bytestream service for your interface and opens it.

set bytestream_index 0
set bytestream [lindex [get_service_paths bytestream] $bytestream_index]
set claimed_bytestream [claim_service bytestream $bytestream mylib]

To specify the outgoing data as a list of bytes and send it through the opened service:

set payload [list 1 2 3 4 5 6 7 8]
bytestream_send $claimed_bytestream $payload

Incoming data also comes as a list of bytes.

set incoming_data [list]
while {[llength $incoming_data] ==0} {
 set incoming_data [bytestream_receive $claimed_bytestream 8]
}

Analyzing and Debugging Designs with System ConsoleAltera Corporation

Send Feedback

QII53028
Bytestream Service10-20 2014.06.30

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20System%20Console%20(QII53028%202014.06.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Close the service when done.

close_service bytestream $claimed_bytestream

Related Information
Bytestream Commands on page 10-40

SLD Service
The SLD Service shifts values into the instruction and data registers of SLD nodes and captures the previous
value.When interactingwith a SLDnode, start by acquiring exclusive access to the node on a opened service.

SLD Service Example

set timeout_in_ms 1000
set lock_failed [sld_lock $sld_service_path $timeout_in_ms]

This code attempts to lock the selected SLD node. If it is already locked, sld_lock waits for the specified
timeout. Confirm the procedure returned non-zero before proceeding. Set the instruction register and
capture the previous one:

if {$lock_failed} {
 return
}
set instr 7
set delay_us 1000
set capture [sld_access_ir $sld_service_path $instr $delay_us]

The 1000 microsecond delay guarantees that the following SLD command executes least 1000 microseconds
later. Data register access works the same way.

set data_bit_length 32
set delay_us 1000
set data_bytes [list 0xEF 0xBE 0xAD 0xDE]
set capture [sld_access_dr $sld_service_path $data_bit_length $delay_us $data_bytes]

Shift count is specified in bits, but the data content is specified as a list of bytes. The capture return value is
also a list of bytes. Always unlock the SLD node once finished with the SLD service.

sld_unlock $sld_service_path

Related Information

• SLD Commands on page 10-25

• Virtual JTAG Megafunction documentation

In-System Sources and Probes Service
The In-System Sources and Probes (ISSP) service provides scriptable access to the altsource_probe IP core
in a similar manner to using the In-System Sources and Probes Editor in Quartus II.

Altera CorporationAnalyzing and Debugging Designs with System Console

Send Feedback

10-21SLD Service
QII53028
2014.06.30

http://www.altera.com/literature/ug/ug_virtualjtag.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20System%20Console%20(QII53028%202014.06.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

ISSP Service Example

Before you use the ISSP service, ensure your design works in the In-System Sources and Probes Editor. In
System Console, open the service for an ISSP instance.

set issp_index 0
set issp [lindex [get_service_paths issp] 0]
set claimed_issp [claim_service issp $issp mylib]

View information about this particular ISSP instance.

array set instance_info [issp_get_instance_info $claimed_issp]
set source_width $instance_info(source_width)
set probe_width $instance_info(probe_width)

Probe data is read as a single bitstring of length equal to the probe width.

set all_probe_data [issp_read_probe_data $claimed_issp]

As an example, you can define the following procedure to extract an individual probe line's data.

proc get_probe_line_data {all_probe_data index} {
 set line_data [expr { ($all_probe_data >> $index) & 1 }]
 return $line_data
}
set initial_all_probe_data [issp_read_probe_data $claim_issp]
set initial_line_0 [get_probe_line_data $initial_all_probe_data 0]
set initial_line_5 [get_probe_line_data $initial_all_probe_data 5]
...
set final_all_probe_data [issp_read_probe_data $claimed_issp]
set final_line_0 [get_probe_line_data $final_all_probe_data 0]

Similarly, source data is written as a single bitstring of length equal to the source width.

set source_data 0xDEADBEEF
issp_write_source_data $claimed_issp $source_data

The currently set source data can also be retrieved.

set current_source_data [issp_read_source_data $claimed_issp]

As an example, you can invert the data for a 32-bit wide source by doing the following:

set current_source_data [issp_read_source_data $claimed_issp]
set inverted_source_data [expr { $current_source_data ^ 0xFFFFFFFF }]
issp_write_source_data $claimed_issp $inverted_source_data

Related Information
In-System Sources and Probes Commands on page 10-40

System Console Infrastructure
Services associated with debug agents in the running design can be directly opened and closed. Behind the
scenes, SystemConsole is responsible for determining and using the lower level protocol for communication
with the debug agent. As part of this, the System Console infrastructure finds the best board connection to
use for command and data transmission.

Analyzing and Debugging Designs with System ConsoleAltera Corporation

Send Feedback

QII53028
System Console Infrastructure10-22 2014.06.30

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20System%20Console%20(QII53028%202014.06.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information
WP-01170 System-Level Debugging and Monitoring of FPGA Designs white paper
Detailed information about the architecture for system level debugging.

On-Board USB Blaster II Support
System Console supports an On-Board USB-BlasterTM II circuit via the USB Debug master IP component.
This IP core supports the master service.

Not all Stratix V boards support the On-Board USB-Blaster II. For example, the transceiver signal integrity
board does not support the On-Board USB-Blaster II.

API

Console Commands

The console commands enable testing. Use console commands to identify a module by its path, and to open
and close a connection to it. The path that identifies amodule is the first argument tomost of SystemConsole
commands.

Table 10-2: Console Commands

FunctionArgumentsCommand

Returns a list of service types that System Console
manages. Examples of service types include master,
bytestream, processor, sld, jtag_debug, device, and
design.

N/Aget_service_types

Returns a list of paths to nodes that implement the
requested service type.

<service_type>get_service_paths

Provides finer control of the portion of a service you
want to use.

The return value from claim_service is the path of
the claimed service which should be used to access and
finally close the service.

Run help claim_service to get a <service-type> list.

Then run help claim_service <service-type> to get
specific help on that service.

<service-type>

<service-path>

<claim-group>
<claims>

claim_service

Closes the specified service type at the specified path.<service_type>

<service_path>

close_service

Returns 1 if the service type provided by the path is
open, 0 if the service type is closed.

<service_type>

<service_path>

is_service_open

Altera CorporationAnalyzing and Debugging Designs with System Console

Send Feedback

10-23On-Board USB Blaster II Support
QII53028
2014.06.30

http://www.altera.com/literature/wp/wp-01170-system-console.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20System%20Console%20(QII53028%202014.06.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

FunctionArgumentsCommand

Returns a list of all services that are instantiable with
the add_service command.

—get_services_to_add

Adds a service of the specified service type with the
given instance name. Run get_services_to_add to
retrieve a list of instantiable services. This command
returns the path where the service was added.

Run help add_service <service-type> to get specific
help about that service type, including any parameters
that might be required for that service.

<service-type>
<instance-name>
<optional-parameters>

add_service

Creates a new GUI dashboard in System Console
desktop.

<name> <title>
<menu>

add_service dashboard

Instantiates a gdbserver.<Processor Service>
<port number>

add_service gdbserver

Instantiates a tcp service.<instance_name>

<ip_addr>

<port number>

add_service tcp

Instantiates a Transceiver Toolkit receiver channel.<data_pattern_checker
path>

<transceiver path>

<transceiver channel
address>

<reconfig path>

<reconfig channel
address>

add_service

transceiver_channel_rx

Instantiates a Transceiver Toolkit transmitter channel.<data_pattern_
generator path>

<transceiver path>

<transceiver channel
address>

<reconfig path>

<reconfig channel
address>

add_service

transceiver_channel_tx

Analyzing and Debugging Designs with System ConsoleAltera Corporation

Send Feedback

QII53028
API10-24 2014.06.30

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20System%20Console%20(QII53028%202014.06.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

FunctionArgumentsCommand

Instantiates a Transceiver Toolkit debug link.<transceiver_channel_
tx path>

<transceiver_channel_
rx path>

add_service

transceiver_debug_link

Returns the current System Console version and build
number.

—get_version

For the given claim group, returns a list of services
claimed. The returned list consists of pairs of paths and
service types. Each pair is one claimed service.

<claim-group>get_claimed_services

Scans for available hardware and updates the available
service paths if there have been any changes.

—refresh_connections

Sends a message of the given level to the message
window. Available levels are info, warning, error, and
debug.

<level>

<message>

send_message

SLD Commands

Table 10-3: SLD Commands

FunctionArgumentsCommand

Shifts the instruction value into
the instruction register of the
specified node. Returns the
previous value of the instruction.

If the <delay> parameter is non-
zero, then the JTAG clock is
paused for this length of time after
the access.

<service-path>

<ir-value>

<delay> (in µs)

sld_access_ir

Shifts the byte values into the data
register of the SLD node up to the
size in bits specified.

If the <delay> parameter is non-
zero, then the JTAG clock is
paused for this length of time after
the access.

Returns the previous contents of
the data register.

<service-path>

<size_in_bits>

<delay-in-µs>,

<list_of_byte_values>

sld_access_dr

Altera CorporationAnalyzing and Debugging Designs with System Console

Send Feedback

10-25SLD Commands
QII53028
2014.06.30

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20System%20Console%20(QII53028%202014.06.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

FunctionArgumentsCommand

Locks the SLD chain to guarantee
exclusive access.

Returns 0 if successful. If the SLD
chain is already locked by another
user, tries for<timeout>msbefore
throwing a Tcl error. You can use
the catch command if youwant to
handle the error.

<service-path>

<timeout-in-milliseconds>

sld_lock

Unlocks the SLD chain.<service-path>sld_unlock

Related Information
SLD Service on page 10-21

Design Service Commands
Design service commands load and work with your design at a system level.

Table 10-4: Design Service Commands

FunctionArgumentsCommand

Loads a model of a Quartus II
design into System Console.
Returns the design path.

For example, if your Quartus II
Project File (.qpf) file is in c:/
projects/loopback, type the
following command:design_load
{c:\projects\loopback\}

<quartus-project-path>,

<sof-file-path>,

or <qpf-file-path>

design_load

Links a Quartus II logical design
with a physical device.

For example, you can link a
Quartus II design called 2c35_
quartus_design to a 2c35 device.
After you create this link, System
Console creates the appropriate
correspondences between the
logical and physical submodules
of the Quartus II project.

<design-instance-path>

<device-service-path>

design_link

Extracts debug files from a SRAM
Object File (.sof) to a zip file which
can be emailed to Altera Support
for analysis.

<design-path>

<zip-file-name>

design_extract_debug_files

Analyzing and Debugging Designs with System ConsoleAltera Corporation

Send Feedback

QII53028
Design Service Commands10-26 2014.06.30

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20System%20Console%20(QII53028%202014.06.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

FunctionArgumentsCommand

Gets the list of warnings for this
design. If the design loads
corrrectly, then an empty list
returns.

<design-path>design_get_warnings

Related Information
Design Service on page 10-18

Device Commands
The device commands provide access to programmable logic devices on your board. Before you use these
commands, identify the path to the programmable logic device on your board using the get_service_paths.

Table 10-5: Device Commands

FunctionArgumentsCommand

Loads the specified .sof file to the
device specified by the path.

<service_path>

<sof-file-path>

device_download_sof

Returns all connections which go
to the device at the specified path.

<service_path>device_get_connections

Returns the design this device is
currently linked to.

<device_path>device_get_design

Related Information
Device Service on page 10-19

Avalon-MM Commands
Using the 8, 16, or 32 versions of the master_read or master_write commands is less efficient than using
the master_write_memory or master_read_memory commands. Master commands can also be used on
slave services. If you are working on a slave service, the address field can be a register (if the slave defines
register names). (1)

Table 10-6: Avalon-MM Commands

FunctionArgumentsCommand

Writes the list of byte values,
starting at the specified base
address.

<service-path>

<address>

<list_of_byte_values>

master_write_memory

(1) Transfers performed in 16- and 32-bit sizes are packed in little-endian format.

Altera CorporationAnalyzing and Debugging Designs with System Console

Send Feedback

10-27Device Commands
QII53028
2014.06.30

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20System%20Console%20(QII53028%202014.06.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

FunctionArgumentsCommand

Writes the list of byte values,
starting at the specified base
address, using 8-bit accesses.

<service-path>

<address>

<list_of_byte_values>

master_write_8

Writes the list of 16-bit values,
starting at the specified base
address, using 16-bit accesses.

<service-path>

<address>

<list_of_16_bit_words>

master_write_16

Writes the entire contents of the
file through the master, starting at
the specified address. The file is
treated as a binary file containing
a stream of bytes.

<service-path>

<file-name>

<address>

master_write_from_file

Writes the list of 32-bit values,
starting at the specified base
address, using 32-bit accesses.

<service-path>

<address>

<list_of_32_bit_words>

master_write_32

Returns a list of<size> bytes. Read
from memory starts at the
specified base address.

<service-path>

<address>

<size_in_bytes>

master_read_memory

Returns a list of<size> bytes. Read
from memory starts at the
specified base address, using 8-bit
accesses.

<service-path>

<address>

<size_in_bytes>

master_read_8

Returns a list of <size> 16-bit
values. Read from memory starts
at the specified base address, using
16-bit accesses.

<service-path>

<address>

<size_in_multiples_of_16_bits>

master_read_16

Returns a list of <size> 32-bit
values. Read from memory starts
at the specified base address, using
32-bit accesses.

<service-path>

<address>

<size_in_multiples_of_32_bits>

master_read_32

Reads the number of bytes
specified by <count> from the
memory address specified and
creates (or overwrites) a file
containing the values read. The
file is written as a binary file.

<service-path>

<file-name>

<address>

<count>

master_read_to_file

When a register map is defined,
returns a list of register names in
the slave.

<service-path>master_get_register_names

Analyzing and Debugging Designs with System ConsoleAltera Corporation

Send Feedback

QII53028
Avalon-MM Commands10-28 2014.06.30

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20System%20Console%20(QII53028%202014.06.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

JTAG Debug Commands

Table 10-7: JTAG Commands

FunctionArgumentsCommand

Loops the specified list of bytes
through a loopback of tdi and tdo
of a system-level debug (SLD)
node. Returns the list of byte
values in the order that they were
received. Blocks until all bytes are
received. Byte values are given
with the 0x (hexadecimal) prefix
and delineated by spaces.

<service-path>

<list_of_byte_values>

jtag_debug_loop

Issues a reset request to the
specified service. Connectivity
within your device determines
which part of the system is reset.

<service-path>jtag_debug_reset_system

Clock and Reset Signal Commands

Table 10-8: Clock and Reset Commands

FunctionArgumentCommand

Returns the value of the clock
signal of the system clock that
drives the module's system
interface. The clock value is
sampled asynchronously;
consequently, you may need to
sample the clock several times to
guarantee that it is toggling.

<service-path>jtag_debug_sample_clock

Returns the value of the reset_n
signal of the Avalon-ST JTAG
Interface core. If reset_n is low
(asserted), the value is 0 and if
reset_n is high (deasserted), the
value is 1.

<service-path>jtag_debug_sample_reset

Altera CorporationAnalyzing and Debugging Designs with System Console

Send Feedback

10-29JTAG Debug Commands
QII53028
2014.06.30

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20System%20Console%20(QII53028%202014.06.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

FunctionArgumentCommand

Returns the result of a sticky bit
that monitors for system clock
activity. If the clock has toggled
since the last execution of this
command, the bit is 1. Returns
true if the bit has ever toggled and
otherwise returns false. The
sticky bit is reset to 0 on read.

<service-path>jtag_debug_sense_clock

Dashboard Commands
Dashboard commands create graphical tools that seamlessly integrate into System Console. This section
describes the supported dashboard Tcl commands and the properties that you can assign to the widgets on
your dashboard. The dashboard allows you to create tools that interact with live instances of an IP core on
your device.

Table 10-9: Dashboard Commands

DescriptionArgumentsCommand

Adds a specified widget to your
GUI dashboard.

<service-path>

<id>

<type>

<group id>

dashboard_add

Removes a specified widget from
your GUI dashboard.

<service-path>

<id>

dashboard_remove

Sets the specified properties of the
specified widget that has been
added to your GUI dashboard.

<service-path>

<property>

<id>

<value>

dashboard_set_property

Determines the existing properties
of a widget added to your GUI
dashboard.

<service-path>

<id>

<type>

dashboard_get_property

Returns a list of all possible
widgets that you can add to your
GUI dashboard.

—dashboard_get_types

Returns a list of all possible
properties of the specified widgets
in your GUI dashboard.

<widget type>dashboard_get_properties

Analyzing and Debugging Designs with System ConsoleAltera Corporation

Send Feedback

QII53028
Dashboard Commands10-30 2014.06.30

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20System%20Console%20(QII53028%202014.06.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information
Dashboard Service on page 10-14

Specifying Widgets
You can specify the widgets that you add to your dashboard.

Note that dashboard_add performs a case-sensitive match against the widget type name.Note:

Table 10-10: Dashboard Widgets

DescriptionWidget

Adds a collection of widgets and control the general layout of the widgets.group

Adds a button.button

Allows you to group tabs together.tabbedGroup

Defines button actions.fileChooserButton

Adds a text string.label

Displays text.text

Adds a text field.textField

Adds a list.list

Adds a table.table

Adds an LED with a label.led

Adds the shape of an analog dial.dial

Adds a chart of historic values, with the X-axis of the chart representing time.timeChart

Adds a bar chart.barChart

Adds a check box.checkBox

Adds a combo box.comboBox

Adds a line chart.lineChart

Adds a pie chart.pieChart

Customizing Widgets
You can changewidget properties. Use dashboard_set_property to interact with thewidgets you instantiate.
This functionality is most useful when you change part of the execution of a callback.

Assigning Dashboard Widget Properties
The following tables list the various properties that you can apply to the widgets on your dashboard.

Altera CorporationAnalyzing and Debugging Designs with System Console

Send Feedback

10-31Specifying Widgets
QII53028
2014.06.30

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20System%20Console%20(QII53028%202014.06.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 10-11: Properties Common to All Widgets

DescriptionProperty

Enables or disables the widget.enabled

Allows the widget to be expanded.expandable

Allows the widget to be resized horizontally if there's space available in
the cell where it resides.

expandableX

Allows the widget to be resized vertically if there's space available in the
cell where it resides.

expandableY

If the widget's expandableY is set, this is the maximum height in pixels
that the widget can take.

maxHeight

If the widget's expandableY is set, this is the minimum height in pixels
that the widget can take.

minHeight

If the widget's expandableX is set, this is the maximum width in pixels
that the widget can take.

maxWidth

If the widget's expandableX is set, this is the minimum width in pixels
that the widget can take.

minWidth

The height of the widget if expandableY is not set.preferredHeight

The width of the widget if expandableX is not set.preferredWidth

Implements a mouse-over tooltip.toolTip

The value of the checkbox, whether it is selected or not.selected

Displays the widget.visible

Registers a callback function to be called when the value of the box
changes.

onChange

Allows you to list available options.options

Table 10-12: button Properties

DescriptionProperty

A Tcl command to run, usually a proc, every time the button is clicked.onClick

The text on the button.text

Table 10-13: fileChooserButton Properties

DescriptionProperty

The text on the button.text

Analyzing and Debugging Designs with System ConsoleAltera Corporation

Send Feedback

QII53028
Assigning Dashboard Widget Properties10-32 2014.06.30

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20System%20Console%20(QII53028%202014.06.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

DescriptionProperty

A Tcl command to run, usually a proc, every time the button is clicked.onChoose

The dialog box title.title

The text of dialog box approval button. By default, it is "Open."chooserButtonText

The file filter based on extension.Only one extension is supported. By default,
all file names are allowed. The filter is specified as [list filter_description file_
extension], for example [list "Text Document (.txt)" "txt"].

filter

Specifies what kind of files or directories can be selected. The default is "files_
only." Possible options are "files_only" and "directories_only."

mode

Controls whether multiple files can be selected. False, by default.multiSelectionEnabled

Returns a list of file paths selected in the file chooser dialog box. This property
is read-only. It is most useful when used within the onclick script or a
procedure when the result is freshly updated after the dialog box closes.

paths

Table 10-14: dial Properties

DescriptionProperties

The maximum value that the dial can show.max

The minimum value that the dial can show.min

The space between the different tick marks of the dial.tickSize

The title of the dial.title

The value that the dial's needle should mark. It must
be between min and max.

value

Table 10-15: group Properties

DescriptionProperties

The number of widgets the group can position in one
row, from left to right, beforemoving to the next row.

itemsPerRow

The title of the group. Groups with a title can have a
border around them, and setting an empty title
removes the border.

title

Table 10-16: label Properties

DescriptionProperties

The text to show in the label.text

Altera CorporationAnalyzing and Debugging Designs with System Console

Send Feedback

10-33Assigning Dashboard Widget Properties
QII53028
2014.06.30

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20System%20Console%20(QII53028%202014.06.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 10-17: led Properties

DescriptionProperties

The color of the LED. The options are: red_off, red,
yellow_off, yellow, green_off, green, blue_off, blue,
and black.

color

The text to show next to the LED.text

Table 10-18: text Properties

DescriptionProperties

Controls whether the text box is editable.editable

Controls whether the text box can format HTML.htmlCapable

The text to show in the text box.text

Table 10-19: timeChart Properties

DescriptionProperties

The label for the X axis.labelX

The label for the Y axis.labelY

The latest value in the series.latest

The number of sample points to display in the historic
record.

maximumItemCount

The title of the chart.title

Table 10-20: table Properties

DescriptionProperties

Table-wide Properties

The number of columns (Mandatory) (0, by default)
.

columnCount

The number of rows (Mandatory) (0, by default).rowCount

Controls whether you can drag the columns (false, by
default).

headerReorderingAllowed

Controls whether you can resize all column widths.
(false, by default). Note, each column can be individ-
ually configured to be resized by using the
columnWidthResizable property.

headerResizingAllowed

Analyzing and Debugging Designs with System ConsoleAltera Corporation

Send Feedback

QII53028
Assigning Dashboard Widget Properties10-34 2014.06.30

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20System%20Console%20(QII53028%202014.06.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

DescriptionProperties

Controls whether you can sort the cell values in a
column (false, by default).

rowSorterEnabled

Controls whether to draw both horizontal and vertical
lines (true, by default).

showGrid

Controls whether to draw horizontal line (true, by
default).

showHorizontalLines

Controls whether to draw vertical line (true, by
default).

showVerticalLines

Current row index. Zero-based. This value affects
some properties below (0, by default).

rowIndex

Current column index. Zero-based. This value affects
all column specific properties below (0, by default).

columnIndex

Specifies the text to be filled in the cell specified the
current rowIndex and columnIndex (Empty, by
default).

cellText

Control or retrieve row selection.selectedRows

Column-specific Properties

The text to be filled in the column header.columnHeader

The cell text alignment in the specified column.
Supported types are "leading"(default), "left", "center",
"right", "trailing".

columnHorizontalAlignment

The type of sorting method used. This is applicable
only if rowSorterEnabled is true. Each column has its
own sorting type. Supported types are "string"
(default), "int", and "float".

columnRowSorterType

The number of pixels used for the column width.columnWidth

Controls whether the column width is resizable by
you (false, by default).

columnWidthResizable

Table 10-21: barChart Properties

DescriptionProperties

Chart title.title

X axis label text.labelX

Y axis label text.labelY

Altera CorporationAnalyzing and Debugging Designs with System Console

Send Feedback

10-35Assigning Dashboard Widget Properties
QII53028
2014.06.30

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20System%20Console%20(QII53028%202014.06.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

DescriptionProperties

Y axis value range. By default, it is auto range. Range
is specified in a Tcl list, for example [list lower_
numerical_value upper_numerical_value].

range

Item value. Value is specified in a Tcl list, for example
list bar_category_str numerical_value.

itemValue

Table 10-22: lineChart Properties

DescriptionProperties

Chart title.title

Axis X label text.labelX

Axis Y label text.labelY

Axis Y value range. By default, it is auto range. Range
is specified in a Tcl list, for example list lower_
numerical_value upper_numerical_value.

range

Item value. Value is specified in a Tcl list, for example
list bar_category_str numerical_value.

itemValue

Table 10-23: pieChart Properties

DescriptionProperties

Chart title.title

Item value. Value is specified in a Tcl list, for example
list bar_category_str numerical_value.

itemValue

Monitor Commands
You can use the Monitor commands to read many Avalon-MM slave memory locations at a regular interval.

Under normal load, the monitor service reads the data after each interval and then calls the callback. If the
value you read is timing sensitive, your can use the monitor_get_read_interval command to read the
exact time between the intervals at which the data was read.

Under heavy load, or with a callback that takes a long time to execute, the monitor service skips some
callbacks. If the registers you read do not have side effects (for example, they read the total number of events
since reset), skipping callbacks has no effect on your code. The monitor_read_data command and
monitor_get_read_interval command are adequate for this scenario.

If the registers you read have side effects (for example, they return the number of events since the last read),
you must have access to the data that was read, but for which the callback was skipped. The
monitor_read_all_data and monitor_get_all_read_intervals commands provide access to this data.

Analyzing and Debugging Designs with System ConsoleAltera Corporation

Send Feedback

QII53028
Monitor Commands10-36 2014.06.30

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20System%20Console%20(QII53028%202014.06.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 10-24: Main Monitoring Commands

FunctionArgumentsCommand

Adds a contiguous memory
address into the monitored
memory list.

<service path> is the value
returned when you opened the
service.

<target-path> argument is the
name of a master service to read.
The address is within the address
space of this service.<target-path>
is returned from [lindex [get_

service_paths master] n]

where n is the number of the
master service.

<address> and <size> are relative
to the master service.

<service-path>

<target-path>

<address>

<size>

monitor_add_range

Defines a Tcl expression in a
single string that will be evaluated
after all the memories monitored
by this service are read. Typically,
this expression should be specified
as a Tcl procedure call with
necessary argument passed in.

<service-path>

<Tcl-expression>

monitor_set_callback

Specifies the frequency of the
polling action by specifying the
interval between two memory
reads. The actual polling
frequency varies depending on the
system activity. The monitor
service will try to keep it as close
to this specification as possible.

<service-path>

<interval>

monitor_set_interval

Returns the current interval set
which specifies the frequency of
the polling action.

<service-path>monitor_get_interval

Enables/disables monitoring.
Memory read starts after this is
enabled, and Tcl callback is
evaluated after data is read.

<service-path>

<enable(1)/disable(0)>

monitor_set_enabled

Altera CorporationAnalyzing and Debugging Designs with System Console

Send Feedback

10-37Monitor Commands
QII53028
2014.06.30

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20System%20Console%20(QII53028%202014.06.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 10-25: Monitor Callback Commands

FunctionArgumentsCommand

Adds contiguous memory
addresses into the monitored
memory list.

The<target-path> argument is the
name of a master service to read.
The address is within the address
space of this service.

<service-path> <target-path>
<address> <size>

monitor_add_range

Defines a Tcl expression in a
single string that will be evaluated
after all the memories monitored
by this service are read. Typically,
this expression should be specified
as a Tcl procedure call with
necessary argument passed in.

<service-path>

<Tcl-expression>

monitor_set_callback

Returns a list of 8-bit values read
from the most recent values read
from device. The memory range
specified must be the same as the
monitored memory range as
defined by monitor_add_range.

<service-path> <target-path>
<address> <size>

monitor_read_data

Returns a list of 8-bit values read
from all recent values read from
device since last Tcl callback. The
memory range specified must be
within the monitored memory
range as defined by monitor_add_
range.

<service-path> <target-path>
<address> <size>

monitor_read_all_data

Returns the number of millisec-
onds between last two data reads
returned by monitor_read_data.

<service-path> <target-path>
<address> <size>

monitor_get_read_interval

Returns a list of intervals in
milliseconds between two reads
within the data returned by
monitor_read_all_data.

<service-path> <target-path>
<address> <size>

monitor_get_all_read_

intervals

Returns the number of callback
events missed during the
evaluation of last Tcl callback
expression.

<service-path>monitor_get_missing_event_

count

Related Information
Monitor Service on page 10-19

Analyzing and Debugging Designs with System ConsoleAltera Corporation

Send Feedback

QII53028
Monitor Commands10-38 2014.06.30

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20System%20Console%20(QII53028%202014.06.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Processor Commands

Table 10-26: Processor Commands

FunctionArgumentsCommand
(2)

Downloads the given Executable
and Linking Format File (.elf) to
memory using the master service
associatedwith the processor. Sets
the processor's program counter
to the .elf entry point.

<service-path>

<elf-file-path>

processor_download_elf

Returns a non-zero value if the
processor is in debug mode.

<service-path>processor_in_debug_mode

Resets the processor and places it
in debug mode.

<service-path>processor_reset

Puts the processor into run mode.<service-path>processor_run

Puts the processor into debug
mode.

<service-path>processor_stop

Executes one assembly instruction.<service-path>processor_step

Returns a list with the names of all
of the processor's accessible
registers.

<service-path>processor_get_register_names

Returns the value of the specified
register.

<service-path>

<register_name>

processor_get_register

Sets the value of the specified
register.

<service-path>

<value>

<register_name>

processor_set_register

Related Information
Nios II Processor Example on page 10-17

(2) If your system includes a Nios II/f core with a data cache, it may complicate the debugging process. If you
suspect the Nios II/f core writes to memory from the data cache at nondeterministic intervals; thereby,
overwriting data written by the System Console, you can disable the cache of the Nios II/f core while debugging.

Altera CorporationAnalyzing and Debugging Designs with System Console

Send Feedback

10-39Processor Commands
QII53028
2014.06.30

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20System%20Console%20(QII53028%202014.06.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Bytestream Commands

Table 10-27: Bytestream Commands

FunctionArgumentsCommand

Sends the list of bytes to the
specified bytestream service.
Values argument is the list of bytes
to send.

<service-path>

<values>

bytestream_send

Returns a list of bytes currently
available in the specified services
receive queue, up to the specified
limit. Length argument is the
maximum number of bytes to
receive.

<service-path>

<length>

bytestream_receive

Related Information
Bytestream Service on page 10-20

In-System Sources and Probes Commands
The valid values for probe claims include read_only, normal, and exclusive.Note:

Table 10-28: In-System Sources and Probes Tcl Commands

FunctionArgumentsCommand

Returns a list of the configurations
of the In-System Sources and
Probes instance, including:

instance_index

instance_name

source_width

probe_width

<service-path>issp_get_instance_info

Retrieves the current value of the
probe input. A hex string is
returned representing the probe
port value.

<service-path>issp_read_probe_data

Retrieves the current value of the
source output port. A hex string
is returned representing the source
port value.

<service-path>issp_read_source_data

Analyzing and Debugging Designs with System ConsoleAltera Corporation

Send Feedback

QII53028
Bytestream Commands10-40 2014.06.30

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20System%20Console%20(QII53028%202014.06.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

FunctionArgumentsCommand

Sets values for the source output
port. The value can be either a hex
string or a decimal value
supported by System Console Tcl
interpreter.

<service-path>

<source-value>

issp_write_source_data

Related Information
In-System Sources and Probes Service on page 10-21

Deprecated Commands
The table lists commands that have been deprecated. These commands are currently supported, but are
targeted for removal from System Console.

Table 10-29: Deprecated Commands

FunctionArgumentsCommand

Opens the specified service type
at the specified path.

Calls to open_service may be
replaced with calls to claim_

service providing that the return
value from claim_service is
stored and used to access and close
the open service.

<service_type>

<service_path>

open_service

Document Revision History

Table 10-30: Document Revision History

ChangesVersionDate

Updated design examples for the following: board bring-up,
dashboard service, Nios II processor, design service, device
service, monitor service, bytestream service, SLD service,
and ISSP service.

14.0.0June 2014

Re-organization of sections. Added high-level information
with block diagram, workflow, SLD overview, use-cases, and
example Tcl scripts.

13.1.0November 2013

Updated Tcl command tables. Added board bring-up design
example. Removed SOPC Builder content.

13.0.0June 2013

Re-organization of content.12.1.0November 2012

Altera CorporationAnalyzing and Debugging Designs with System Console

Send Feedback

10-41Deprecated Commands
QII53028
2014.06.30

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20System%20Console%20(QII53028%202014.06.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

ChangesVersionDate

MovedTransceiverToolkit commands toTransceiverToolkit
chapter.

12.0.1August 2012

Maintenance release. This chapter adds new SystemConsole
features.

12.0.0June 2012

Maintenance release. This chapter adds new SystemConsole
features.

11.1.0November 2011

Maintenance release. This chapter adds new SystemConsole
features.

11.0.0May 2011

Maintenance release. This chapter adds new commands and
references for Qsys.

10.1.0December 2010

Initial release. Previously released as the System Console
User Guide, which is being obsoleted. This new chapter adds
new commands.

10.0.0July 2010

For previous versions of the Quartus II Handbook , refer to the Quartus II Handbook Archive.

Related Information
Quartus II Handbook Archive

Analyzing and Debugging Designs with System ConsoleAltera Corporation

Send Feedback

QII53028
Document Revision History10-42 2014.06.30

http://www.altera.com/literature/lit-qts_archive.jsp
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20System%20Console%20(QII53028%202014.06.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

	10. Analyzing and Debugging Designs with System Console
	About System Console
	Use Cases for System Console
	Using Debug Agents
	System Console Flow
	Application and Interfaces
	Starting System Console
	Starting System Console from Quartus II
	Starting System Console from Qsys
	Starting System Console from Nios II Command Shell
	Customizing Startup
	Command-Line Arguments

	The System Console GUI
	System Explorer Pane

	Interactive Help
	Services
	Common Services
	Locating Available Services
	Opening and Closing Services

	System Console Examples
	Board Bring-Up with System Console Tutorial
	Board Bring-Up Flow
	Qsys Modules
	Checksum Accelerator Functionality

	Setting Up the Board Bring-Up Design Example
	Verifying Clock and Reset Signals
	Verifying Memory and Other Peripheral Interfaces
	Locating and Opening the Master Service
	Avalon-MM Slaves
	Testing the PIO component
	Testing On-chip Memory
	Testing the Checksum Accelerator

	Dashboard Service
	Dashboard Example

	Nios II Processor Example
	Additional Services
	Design Service
	Device Service
	Monitor Service
	Bytestream Service
	SLD Service
	In-System Sources and Probes Service

	System Console Infrastructure
	On-Board USB Blaster II Support
	API
	SLD Commands
	Design Service Commands
	Device Commands
	Avalon-MM Commands
	JTAG Debug Commands
	Clock and Reset Signal Commands
	Dashboard Commands
	Specifying Widgets
	Customizing Widgets
	Assigning Dashboard Widget Properties

	Monitor Commands
	Processor Commands
	Bytestream Commands
	In-System Sources and Probes Commands
	Deprecated Commands
	Document Revision History

