Altera On-Chip Termination (Altera OCT) allows you to dynamically calibrate I/O with reference to an external resistor. The Altera OCT megafunction improves signal integrity, reduces board space and is necessary for communicating with external devices such as memory interfaces.

The Altera OCT megafunction is available for Arria® 10 devices only. For Arria V, Cyclone® V, and Stratix® V devices, follow the steps in Migrating Your ALTOCT Megafunction on page 1 to migrate your megafunction.

Related Information
- Introduction to Megafunction IP Cores
- Dynamic Calibrated On-Chip Termination (ALTOCT) Megafunction User Guide

IP Migration Flow for Arria V, Cyclone V, and Stratix V Devices

The IP migration flow allows you to migrate the ALTOCT megafunction of Arria V, Cyclone V, and Stratix V devices to the Altera OCT megafunction of Arria 10 devices.

The IP migration flow configures the Altera OCT megafunction to match the settings of the ALTOCT megafunction, allowing you to regenerate the megafunction.

Note: This megafunction only support the IP migration flow in single OCT calibration mode. If you are using double or POD calibration mode, you do not need to migrate the megafunction.

Migrating Your ALTOCT Megafunction

To migrate your ALTOCT megafunction, follow these steps:

1. Open your ALTOCT megafunction in the MegaWizard Plug-In Manager.
2. In the Currently selected device family, select Arria 10.
3. Click Finish to open the Altera OCT megafunction in the MegaWizard Plug-In Manager. The MegaWizard Plug-In Manager configures the Altera OCT megafunction settings similar to the ALTOCT megafunction settings.
4. If there are any incompatible settings between the two, select new supported settings.
5. Click Finish to regenerate the megafunction.
6. Replace your ALTOCT megafunction instantiation in RTL with the Altera OCT megafunction.

Note: The Altera OCT megafunction port names may not match the ALTOCT megafunction port names, so simply changing the megafunction name in the instantiation is not sufficient.
Parameter Settings

This section describes the Altera OCT megafonction parameter settings. You can parameterize the megafonction using the MegaWizard Plug-In Manager.

Table 1: Altera OCT MegaWizard Plug-In Manager Page Options and Description

<table>
<thead>
<tr>
<th>MegaWizard Plug-in Manager Page</th>
<th>Configuration Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Which action do you want to perform?</td>
<td>Select from the following options:</td>
</tr>
<tr>
<td></td>
<td>• Create a new custom megafonction variation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Edit an existing custom megafonction variation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Copy an existing custom megafonction variation</td>
<td></td>
</tr>
<tr>
<td>2a</td>
<td>Select a megafonction from the list below</td>
<td>Select Altera OCT from the I/O category.</td>
</tr>
<tr>
<td></td>
<td>Which device family will you be using?</td>
<td>Specify the device family that you want to use.</td>
</tr>
<tr>
<td></td>
<td>Which type of output file do you want to create?</td>
<td>Choose Verilog HDL (.v) as the output file type.</td>
</tr>
<tr>
<td></td>
<td>What name do you want for the output file?</td>
<td>Specify the name of the output file.</td>
</tr>
<tr>
<td></td>
<td>Return to this page for another create operation</td>
<td>Turn on this option if you want to return to this page to create multiple megafonctions.</td>
</tr>
<tr>
<td>3</td>
<td>Calibration mode</td>
<td>Defines the OCT calibration mode. Select from the following options:</td>
</tr>
<tr>
<td></td>
<td>• Single: For a given voltage, the OCT block can generate calibration code only for a single pair of series/parallel termination values.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Double: For a given voltage, the OCT block can generate calibration code for up to two pairs of series/parallel termination values.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• POD: Configures the OCT block to generate calibration code specific for pseudo-open drain (POD) I/O standards.</td>
<td></td>
</tr>
</tbody>
</table>
Features

The following figure shows the top-level diagram of the Altera OCT megafunction.

Figure 1: Altera OCT Megafunction Top-Level Diagram

The Altera OCT megafunction provides the following features:

- **RZQ pin**—Dual-purpose pin. When used with OCT, the pin connects to an external reference resistor to calculate the calibration codes to implement the required impedance.
- **OCT block**—Generates and sends calibration code words to the I/O buffer blocks.
- **OCT logic**—Receives the calibration code words serially from the OCT block and sends the calibration code words in parallel to the buffers.

RZQ Pin

Each OCT block has one RZQ pin. RZQ pins are dual-purpose, which means that if the pins are not connected to the OCT block, you can use the pins as regular I/O pins. Calibrated pins must have the same VCCIO as the OCT block and the RZQ pin. Calibrated pins connected to the same OCT block must have the same series and parallel termination values. You can apply location constraints on the RZQ pins to determine the placement of the OCT block because the RZQ pin can only be connected to its corresponding OCT block.

OCT Block

The OCT block is a component that generates calibration codes to terminate the I/Os. When calibrating, the OCT matches the impedance seen on the external resistor through the rzqin port. Then, the OCT block generates two 16-bit calibration code words; one word calibrates the series termination while the other calibrates the parallel termination. A dedicated bus serially sends the words to the OCT logic.

OCT Logic

The following figure shows the internals of an OCT logic.
The OCT block serially sends the calibration code words to the OCT logic through the ser_data ports. The enser signal specifies which OCT block to read the calibration code words from when triggered. The calibration code words are then buffered into the serial-to-parallel shift logic. Then, the Altera OCT megafunction asserts the S2PLOAD signal to send the calibration code words in parallel to the I/O buffers. The calibration code words either activate or deactivate the transistors in the I/O block which will emulate series or parallel resistance to match the impedance.

Functional Description

To meet DDR memory specification, Arria 10 devices support on-chip series termination (R_S OCT) and on-chip parallel termination (R_T OCT) for single-ended I/O standards. OCT can be supported on any I/O bank. VCCIO must be compatible for all I/Os in a given bank.

An Arria 10 device consists of one OCT block in each x48 I/O tile. Each OCT block requires an external 240Ω reference resistor associated with it through an RZQ pin. An RZQ pin shares the same VCCIO supply with the I/O bank where it is located. An RZQ pin is a dual function I/O pin that you can use as a regular I/O if OCT calibration is not used. When used for OCT calibration, the RZQ pin connects the OCT block to ground through an external 240Ω resistor.

The following figures show how OCTs are connected in a single I/O column (in a daisy chain). An OCT can calibrate an I/O belonging to any tile, as long as the tile is in the same column and meets the voltage requirements. Because there are no connections between columns, OCT can only be shared if the pins belong to the same I/O column of the OCT.
Figure 3: Altera OCT Tile-to-Tile Connections

Figure 4: Column in Pin Planner
Interfaces

The Altera OCT megafuntion has two main interfaces:

- An input interface directly connected from the FPGA RZQ pad.
- Two 16-bit words output which will connect to I/O buffers.

Figure 5: Altera OCT Interfaces

The following table lists the signals for the interfaces.

Table 2: Signals

<table>
<thead>
<tr>
<th>Signal Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>rzqin</td>
<td>Input connection from RZQ pad to the OCT block. RZQ pad is connected to an external resistance. OCT uses impedance connected to the rzqin port as a reference to generate the calibration code.</td>
</tr>
<tr>
<td>series_termination[15:0]</td>
<td>Output connection from the Altera OCT megafunction to the I/O buffers. This is a 16-bit calibration code word which will terminate an output signal and the I/O buffer. You must connect the series_termination port to the seriesterminationcontrol port in the input or output buffer.</td>
</tr>
<tr>
<td>parallel_termination[15:0]</td>
<td>Output connection from the Altera OCT megafunction to the I/O buffers. This is a 16-bit calibration code word which will terminate an input signal and the I/O buffer. You must connect the parallel_termination port to the parallelterminationcontrol port in the input or output buffer.</td>
</tr>
</tbody>
</table>
Table 3: Termination Interface Signals

<table>
<thead>
<tr>
<th>Signal Name</th>
<th>Direction</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>seriesterminationcontrol</td>
<td>Input</td>
<td>16 bit input port. Receives impedance calibration code for output termination. Source can only be seriesterminationcontrol port from the Altera OCT megafunction.</td>
</tr>
<tr>
<td>parallelterminationcontrol</td>
<td>Input</td>
<td>16 bit input port. Receives impedance calibration code for input termination. Source can only be parallelterminationcontrol port from the Altera OCT megafunction.</td>
</tr>
</tbody>
</table>

QSF Assignments

Arria 10 devices has the following termination related Quartus II Settings File (.qsf) assignments:

- `INPUT_TERMINATION`
- `OUTPUT_TERMINATION`
- `TERMINATION_CONTROL_BLOCK`
- `RZQ_GROUP`

The following table lists the details of each assignment:

Table 4: QSF Assignments

<table>
<thead>
<tr>
<th>QSF Assignment</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>INPUT_TERMINATION</code></td>
<td>The input/output termination assignment specifies the termination value in ohm on the pin in question.</td>
</tr>
<tr>
<td><code>OUTPUT_TERMINATION</code></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>set_instance_assignment -name INPUT_TERMINATION <value> -to <pin name></td>
</tr>
<tr>
<td>set_instance_assignment -name OUTPUT_TERMINATION <value> -to <pin name></td>
</tr>
</tbody>
</table>
QSF Assignments

<table>
<thead>
<tr>
<th>QSF Assignment</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>INPUT_TERMINATION</td>
<td>To enable the series/parallel termination ports, include these assignments which will specify the series and parallel termination values for the pins. Make sure to connect the seriesterminationcontrol and parallelterminationcontrol ports from the Altera OCT megafunction to the Altera GPIO megafunction.</td>
</tr>
<tr>
<td>OUTPUT_TERMINATION</td>
<td></td>
</tr>
<tr>
<td>TERMINATION_CONTROL_BLOCK</td>
<td>Directs the Fitter to make the proper connection from the desired OCT block to the specified pins.</td>
</tr>
<tr>
<td>RZQ_GROUP</td>
<td>This assignment is supported in Arria 10 devices only. This assignment creates an Altera OCT megafunction without modifying the RTL. The Fitter searches for the rzq pin name in the netlist. If the pin does not exist, the Fitter creates the pin name along with the Altera OCT megafunction and its corresponding connections. This allows you to create a group of pins to be calibrated by an existing or non-existing OCT and the Fitter ensures the legality of the design.</td>
</tr>
</tbody>
</table>

Example

```python
set_instance_assignment -name INPUT_TERMINATION "PARALLEL VALUE OHM WITH CALIBRATION" -to <pin>
set_instance_assignment -name OUTPUT_TERMINATION "SERIES VALUE OHM WITH CALIBRATION" -to <pin>
```

```
set_instance_assignment -name TERMINATION_CONTROL_BLOCK <desired OCT BLK> -to <pin name>
```

```
set_instance_assignment -name RZQ_GROUP <rzq pin name> -to <pin name>
```
Termination can exist on input and output buffers and sometimes simultaneously.

There are two methods to associate pin groups with an OCT block:

- Use a .qsf assignment to indicate which pin (bus) is associated with which an OCT block. You can either use the TERMINATION_CONTROL_BLOCK assignment, which will associate a pin with an OCT instantiated in the RTL, or use the RZQ_GROUP assignment, which will associate the pin with a newly created OCT without modifying the RTL.
- Instantiate the I/O buffer primitives at the top level and connect them to the appropriate OCT blocks.

Note: All I/O banks with the same VCCIO can share one OCT block, even if that particular I/O bank has its own OCT block. You can connect any number of I/O pins that support calibrated termination to an OCT block. Ensure that you connect I/Os with compatible configuration to an OCT block. You must also ensure that the OCT block and its corresponding I/Os have the same VCCIO and series/parallel termination values. Then, the Fitter places the I/Os and OCT block in the same column. The Quartus® II software generates warning messages if there is no pin connected to the block.

Design Example

The Altera OCT megafunction can generate a design example that matches the same configuration chosen for the megafunction. The design example is a simple design that does not target any specific application; however you can use the design example as a reference on how to instantiate the megafunction.

Note: The .qsys files are for internal use during example design generation only. You cannot edit the files.

Note: The Altera OCT megafunction does not support VHDL generation.

Generating Design Example

During generation, the Generation dialog box displays the option to generate a design example. Turn on the Generate Example Design option.

The software generates the `<instance>_example_design` directory along with the megafunction, where `<instance>` is the name of your megafunction.

The `<instance>_example_design` directory contains the `make_qii_design.tcl` TCL scripts.

Generating Quartus Design Example

The `make_qii_design.tcl` generates a synthesizable design example along with a Quartus project, ready for compilation.

To generate synthesizable design example, run the following script at the end of megafunction generation:

```
quartus_sh -t make_qii_design.tcl
```

To specify an exact device to use, run the following script:

```
quartus_sh -t make_qii_design.tcl [device_name]
```
This script generates a `qii` directory containing a project called `ed_synth.qpf`. You can open and compile this project with the Quartus II software.

Document Revision History

The following table lists the revision history for this document.

Table 5: Document Revision History

<table>
<thead>
<tr>
<th>Date</th>
<th>Version</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>November, 2013</td>
<td>2013.11.29</td>
<td>Initial release.</td>
</tr>
</tbody>
</table>