

 OPAE

 1.1.2

 OPAE User Guides

	Quick Start Guide
	OPAE Installation Guide
	OPAE C API Programming Guide	Overview
	OPAE Role
	Intel Accelerator Stack Hardware Terminology
	OPAE Software Concepts Reflected in the C API
	OPAE Library
	Sample Code
	High-Level Directory Structure
	Basic Application Flow
	API Components	Object Models
	Functions
	FPGA Resource Properties

	OPAE C API Return Codes
	Usage Models	Query and Search for a Resource
	Acquire and Release a Resource
	Shared Memory Buffer
	MMIO

	Intel® Accelerator Functional Unit (AFU) Simulation Environment (ASE) User Guide
	OPAE Python Bindings

OPAE Libraries

	Building the OPAE C Library
	OPAE C API Reference
	OPAE C++ Core API Reference
	OPAE Python API Reference

OPAE Linux Kernel Drivers

	Open Programmable Accelerator Engine (OPAE) Linux Device Driver Architecture
	sysfs files
	Building the OPAE Intel FPGA driver (in-tree)
	Building the OPAE Intel FPGA driver (out-of-tree)

OPAE FPGA Tools

	coreidle
	fpgabist
	fpgainfo
	fpgaconf
	fpgad
	fpgadiag
	fpgaflash
	fpgamux
	fpgaport
	mmlink
	pacd
	packager
	userclk
	PACSign
	fpgasupdate
	fpgaotsu
	super-rsu
	bitstreaminfo

OPAE AFU Tools

	hssi_config
	hssi_loopback

 OPAE

 	Docs »
	OPAE C API Programming Guide
	

 View page source

OPAE C API Programming Guide¶

Overview¶

The OPAE C library (libopae-c) is a lightweight user-space library
that provides abstractions for FPGA resources in a compute environment.
The OPAE C library builds on the driver stack that supports the FPGA
device, abstracting hardware- and OS-specific details. It provides
access to the underlying FPGA resources as a set of features available
to software programs running on the host. These features include the
acceleration logic preconfigured on the FPGA and functions to manage and
reconfigure the FPGA. The library enables your applications to
transparently and seamlessly benefit from FPGA-based acceleration.

[image: Layered]

By providing a unified C API, the library supports different FPGA
integration and deployment models, ranging from single-node systems with
one or a few FPGA devices to large-scale FPGA deployments in a data
center. At one end of the spectrum, the API supports a simple
application using a PCIe link to reconfigure the FPGA with different
accelerator functions. At the other end of the spectrum, resource
management and orchestration services in a data center can use this API
to discover and select FPGA resources and then allocate them for use by
acceleration workloads.

OPAE Role¶

The OPAE provides a common base layer for a wide range of applications
without sacrificing performance or efficiency. The abstraction layer
limits the details of the FPGA hardware that software applications must
handle.

The OPAE provides consistent interfaces to crucial components of the
platform. The OPAE does not constrain frameworks and applications by
making optimizations with limited applicability. When the OPAE does
provide convenience functions or optimizations, they are optional.

For example, the OPAE provides an interface to allocate physically
contiguous buffers in system memory that user-space software and an
accelerator can share. This interface enables the most basic feature set
of allocating and sharing a large page of memory in one API call.
However, it does not provide a malloc()-like interface backed by a
memory pool or slab allocator. Higher layers of the software stack can
make such domain-specific optimizations.

Intel Accelerator Stack Hardware Terminology¶

The following terms define the hardware and hardware processes involved
in creating an accelerator function.

	FPGA: Field Programmable Gate
Array
is a discrete or integrated device connecting to a host CPU via PCIe
or other type of interconnects.
	Accelerator Function Unit (AFU): The AFU is the supplied
implementation of an accelerator, typically in HDL. AFUs implement a
function such as compression, encryption, or mathematical operations.
The Quartus Prime Pro software synthesizes the RTL logic into a
bitstream.
	Accelerator Function (AF): The AF is the compiled binary for an AFU.
An AF is a raw binary file (.rbf) bitstream. A tool (fpgaconf)
reconfigures the FPGA using an AF bitstream.
	Reconfiguration: The process of reprogramming the FPGA with a
different AF.

OPAE Software Concepts Reflected in the C API¶

The following OPAE data structures and functions integrate AFUs into the
OPAE environment. The OPAE C API models these data structures and
functions. For more information on the object models refer to the
Object model section.

	Accelerator: An accelerator is an allocable accelerator function
implemented in an FPGA. An accelerator tracks the ownership of an
AFU (or part of it) for a process that uses it. Multiple processes
can share an accelerator.
	Device: The OPAE enumerates and models two device types: the FPGA and
the AFU.
	Events: Events are asynchronous notifications. The FPGA driver
triggers particular events to indicate error conditions. Accelerator
logic can also define its own events. User applications can choose to
be notified when particular events occur and respond appropriately.
	Shared memory buffers: Software allocates shared memory buffers in
user process memory on the host. Shared memory buffers facilitate
data transfers between the user process and the accelerator that it
owns.

OPAE Library¶

Linking with this library is straightforward. Code using the OPAE
library should include the header file fpga.h. Taking the GCC
compiler on Linux as an example, here is the simplest compile and link
command:

gcc myprog.c -I</path/to/fpga.h> -L</path/to/libopae-c.so> -lopae-c -luuid -ljson-c -lpthread

The OPAE library uses the third-party `libuuid` and `libjson-c` libraries that are not distributed with
the OPAE library. Make sure to install these libraries.

Sample Code¶

The library source includes two code samples. Use these samples to learn
how to call functions in the library. Build and run these samples to
determine if your installation and environment are set up properly.

Refer to the Running the Hello FPGA
Example
chapter in the Intel® Acceleration Stack Quick Start Guide for for
Intel Programmable Acceleration Card with Intel Arria® 10 GX FPGA for
more information about using the sample code.

High-Level Directory Structure¶

Building and installing the OPAE library results in the following
directory structure on the Linux OS. Windows and MacOS have similar
directories and files.

	Directory & Files	Contents
	include/opae	Directory
containing
all header
files
	include/opae/fpga.h	Top-level
header for
user code
to include
	include/opae/access
.h	Header
file for
accelerato
r
acquire/re
lease,
MMIO,
memory
management
,
event
handling,
and so on
	include/opae/bitstr
eam.h	Header
file for
bitstream
manipulati
on
functions
	include/opae/common
.h	Header
file for
error
reporting
functions
	include/opae/enum.h	Header
file for
AFU
enumeratio
n
functions
	include/opae/manage
.h	Header
file for
FPGA
management
functions
	include/opae/types.
h	Various
type
definition
s
	lib	Directory
containing
shared
library
files
	lib/libopae-c.so	The shared
dynamic
library
for
linking
with the
user
applicatio
n
	doc	Directory
containing
API
documentat
ion
	doc/html	Directory
for
documentat
ion
of HTML
format
	doc/latex	Directory
for
documentat
ion
of LaTex
format
	doc/man	Directory
for
documentat
ion
of Unix
man page
format

Basic Application Flow¶

The figure below shows the basic application flow from the viewpoint of
a user-process.

[image: Basic]

API Components¶

The API object model abstracts the physical FPGA device and available
functions. It is a generalized model and extends to describe any FPGA
type.

Object Models¶

	fpga_objtype: An enum type that represents the type of an FPGA
resource, either FPGA_DEVICE or FPGA_ACCELERATOR. An
FPGA_DEVICE object corresponds to a physical FPGA device. Only
FPGA_DEVICE objects can invoke management functions. The
FPGA_ACCELERATOR represents an instance of an AFU.
	fpga_token: An opaque type that represents a resource known to,
but not necessarily owned by, the calling process. The calling
process must own a resource before it can invoke functions of the
resource.
	fpga_handle: An opaque type that represents a resource owned by
the calling process. The API functions fpgaOpen() and
fpgaClose() acquire and release ownership of a resource that an
fpga_handle represents. (Refer to the Functions
section for more information.)
	fpga_properties: An opaque type for a properties object. Your
applications use these properties to query and search for appropriate
resources. The FPGA Resource
Properties section documents
properties visible to your applications.
	fpga_event_handle: An opaque handle the FPGA driver uses to
notify your application about an event.
	fpga_event_type: An enum type that represents the types of
events. The following are valid values: FPGA_EVENT_INTERRUPT,
FPGA_EVENT_ERROR, and FPGA_EVENT_POWER_THERMAL. (The Intel
Programmable Acceleration Card (PAC) with Intel Arria 10 GX FPGA does
not handle thermal and power events.)
	fpga_result: An enum type to represent the result of an API
function. If the function returns successfully the result is
FPGA_OK. Otherwise, the result is the appropriate error codes.
Function fpgaErrStr() translates an error code into
human-readable strings.

Functions¶

The table below groups important API calls by their functionality. For
more information about each of the functions, refer to the OPAE C API
reference
manual.

	Functional
ity	API Call	FPGA	Accelera
tor	Description
	Enumeratio
n	fpgaEnumer
ate()	Yes	Yes	Query FPGA resources that
match certain properties
	Enumeratio
n:
Properties	fpga[Get,
Update, Clea
r, Clone, De
stroy Proper
ties]()	Yes	Yes	Manage
fpga_properties life
cycle
	 	fpgaProper
tiesGet[Prop
]()	Yes	Yes	Get the specified
property Prop, from the
FPGA Resource
Properties
table
	 	fpgaProper
tiesSet[Prop
]()	Yes	Yes	Set the specified
property Prop, from the
FPGA Resource
Properties
table
	Access:
Ownership		``fpga[Open,
	Close]()``

	Yes	Yes	Acquire/release ownership
	Access:
Reset	fpgaReset(
)	Yes	Yes	Reset an accelerator
	Access:
Event
handling	``fpga[Regis
ter, Unregis
ter]Event()`
`	Yes	Yes	Register/unregister an
event to be notified
about
	 	``fpga[Creat
e, Destroy]E
ventHandle()
``	Yes	Yes	Manage
fpga_event_handle
life cycle
	Access:
UMsg	fpgaGetNum
Umsg(),
fpgaSetUms
gAttributes(
),
fpgaTrigge
rUmsg(),
fpgaGetUms
gPtr()	Yes	No	Low-latency accelerator
notification mechanism.
	Access:
MMIO	fpgaMapMMI
O(),
fpgaUnMapM
MIO()	Yes	Yes	Map/unmap MMIO space
	 	fpgaGetMMI
OInfo()	Yes	Yes	Get information about the
specified MMIO space
	 	``fpgaReadMM
IO[32, 64]()
``	Yes	Yes	Read a 32-bit or 64-bit
value from MMIO space
	 	fpgaWriteM
MIO[32, 64](
)	Yes	Yes	Write a 32-bit or 64-bit
value to MMIO space
	Memory
management
:
Shared
memory	fpga[Prepa
re, Release]
Buffer()	Yes	Yes	Manage memory buffer
shared between the
calling process and an
accelerator
	 	fpgaGetIOV
A()	Yes	Yes	Return the virtual
address of a shared
memory buffer
	Management
:
Reconfigur
ation	``fpgaReconf
igureSlot()`
`	Yes	No	Replace an existing AFU
with a new one
	Error
report	fpgaErrStr
()	Yes	Yes	Map an error code to a
human readable string

FPGA Resource Properties¶

Applications query resource properties by specifying the property name
for Prop in the fpgaPropertiesGet[Prop]() and
fpgaPropertiesSet[Prop]() functions. The FPGA and Accelerator
columns state whether or not the Property is available for the FPGA or
Accelerator objects.

	Property	FPGA	Acceler
ator	Descrip
tion
	Parent	No	Yes	fpga_
token
of the
parent
object
	ObjectType	Yes	Yes	The
type of
the
resourc
e:
either
FPGA_
DEVICE`
`
or
``FPGA_
ACCELER
ATOR
	Bus	Yes	Yes	The bus
number
	Device	Yes	Yes	The PCI
device
number
	Function	Yes	Yes	The PCI
functio
n
number
	SocketId	Yes	Yes	The
socket
ID
	DeviceId	Yes	Yes	The
device
ID
	NumSlots	Yes	No	Number
of AFU
slots
availab
le
on an
``FPGA_
DEVICE`
`
resourc
e
	BBSID	Yes	No	The
FPGA
Interfa
ce
Manager
(FIM)
ID of
an
``FPGA_
DEVICE`
`
resourc
e
	BBSVersion	Yes	No	The FIM
version
of an
``FPGA_
DEVICE`
`
resourc
e
	VendorId	Yes	No	The
vendor
ID of
an
``FPGA_
DEVICE`
`
resourc
e
	Model	Yes	No	The
model
of an
``FPGA_
DEVICE`
`
resourc
e
	LocalMemory
Size	Yes	No	The
local
memory
size of
an
``FPGA_
DEVICE`
`
resourc
e
	Capabilitie
s	Yes	No	The
capabil
ities
of an
``FPGA_
DEVICE`
`
resourc
e
	GUID	Yes	Yes	The
GUID of
an
FPGA_
DEVICE`
`
or
``FPGA_
ACCELER
ATOR
resourc
e
	NumMMIO	No	Yes	The
number
of MMIO
space
of an
FPGA_
ACCELER
ATOR
resourc
e
	NumInterrup
ts	No	Yes	The
number
of
interru
pts
of an
FPGA_
ACCELER
ATOR
resourc
e
	Accelerator
State	No	Yes	The
state
of an
FPGA_
ACCELER
ATOR
resourc
e:
either
FPGA_
ACCELER
ATOR_AS
SIGNED`
`
or
``FPGA_
ACCELER
ATOR_UN
ASSIGNE
D

OPAE C API Return Codes¶

The OPAE C library returns a code for every exported public API
function. FPGA_OK indicates successful completion of the requested
operation. Any return code other than FPGA_OK indicates an error or
unexpected behavior. When using the OPAE C API, always check the API
return codes.

	Error Code	Description
	FPGA_OK	Operation completed successfully
	FPGA_INVALID_PARAM	Invalid parameter supplied
	FPGA_BUSY	Resource is busy
	FPGA_EXCEPTION	An exception occurred
	FPGA_NOT_FOUND	A required resource was not found
	FPGA_NO_MEMORY	Not enough memory to complete operation
	FPGA_NOT_SUPPORTED	Requested operation is not supported
	FPGA_NO_DRIVER	Driver is not loaded
	FPGA_NO_DAEMON	FPGA Daemon (fpgad) is not running
	FPGA_NO_ACCESS	Insufficient privileges or permissions
	FPGA_RECONF_ERROR	Error while reconfiguring FPGA

Usage Models¶

Query and Search for a Resource¶

The user-code first populates an fpga_properties object with the
required properties. Then, fpgaEnumerate() searches for matching
resources. fpgaEnumerate() may return more than one matching
resource.

#include "fpga/fpga.h"

fpga_guid guid;
fpga_properties filter = NULL;
fpga_result res;
fpga_token tokens[MAX_NUM_TOKENS];
uint32_t num_matches = 0;

/* Start with an empty properties object */
res = fpgaGetProperties(NULL, &filter);

/* Populate the properties object with required values.
 In this case, search for accelerators that matches
 the specified GUID.
*/
uuid_parse(GUID, guid);
res = fpgaPropertiesSetObjectType(filter, FPGA_ACCELERATOR);
res = fpgaPropertiesSetGuid(filter, guid);

/* Query the number of matching resources */
res = fpgaEnumerate(&filter, 1, NULL, 1, &num_matches);

/* Return tokens for all matching resources */
res = fpgaEnumerate(&filter, 1, tokens, num_matches, &num_matches);

/* Destroy the properties object */
res = fpgaDestroyProperties(&filter);

/* More code */
......

/* Destroy tokens */
for (uint32_t i = 0; i < num_matches; ++i) {
 res = fpgaDestroyToken(tokens[i]);
}

The fpgaEnumerate() function can take multiple
fpga_propertiesobjects in an array. In such cases, the function
performs a logical OR of the properties object and returns resources
that match any of the multiple properties. The fpga_token objects
that fpgaEnumerate() returns, do not signify ownership. To acquire
ownership of a resource represented by a token, pass the token to
fpgaOpen().

Acquire and Release a Resource¶

Use fpgaOpen() and fpgaClose() to acquire and release ownership
of a resource. The calling process must own the resource before it can
initiate MMIO, access share memory buffers, and use functions offered by
the resource.

#include "fpga/fpga.h"

fpga_handle handle;
fpga_result res;

/* Acquire ownership of a resource that
`fpgaEnumerate()` previously returned as a token */

res = fpgaOpen(token, &handle);

/* More code */
......

/* Release the ownership */
res = fpgaClose(handle);

Shared Memory Buffer¶

This code snippet shows how to prepare a memory buffer to be shared
between the calling process and an accelerator.

#include "fpga/fpga.h"

fpga_handle handle;
fpga_result res;

/* Hint for the virtual address of the buffer */
volatile uint64_t *addr_hint;
/* An ID we can use to reference the buffer later */
uint32_t bufid;
/* Flag to indicate whether or not the buffer is preallocated */
int flag = 0;

/* Allocate (if necessary), pin, and map a buffer to be accessible
 by an accelerator
*/
res = fpgaPrepareBuffer(handle, BUF_SIZE, (void **) &addr_hint,
 &bufid, flag);

/* The actual address mapped to the buffer */
uint64_t iova;
/* Get the IO virtual address for the buffer */
res = fpgaGetIOVA(handle, bufid, &iova);

/* Inform the accelerator about the virtual address by writing to its mapped
 register file
*/
......

/* More code */
......

/* Release the shared buffer */
res = fpgaReleaseBuffer(handle, bufid);

The `flag` variable can take a constant `FPGA_BUF_PREALLOCATED` to
indicate that the calling process has already allocated the address space
that `addr_hint` points to.

MMIO¶

This code snippet shows how to map and unmap the register file of an
accelerator into the calling process’s virtual memory space.

#include "fpga/fpga.h"

fpga_handle handle;
fpga_result res;

/* Index of the MMIO space. There might be multiple spaces on an accelerator */
uint32_t mmio_num = 0;
/* Mapped address */
uint64_t mmio_addr;

/* Map MMIO */
res = fpgaMapMMIO(handle, mmio_num, &mmio_addr);

/* Write to a 32-bit value to the mapped register file at a certain byte
 offset.

 CSR_CTL is the offset in the mapped space to where the value will be
 written. It's defined elsewhere.
*/
res = fpgaWriteMMIO32(handle, mmio_num, CSR_CTL, value);

/* More code */
......

/* Unmap MMIO */
res = fpgaUnmapMMIO(handle, mmio_num);

Every AFU has its own register adress space and its own protocol to control operation through
the registers.

 Next

 Previous

 © Copyright 2017 Intel Corporation.

 Built with Sphinx using a theme provided by Read the Docs.

