Nios Il Software Developer’s

101 Innovation Drive
San Jose, CA 95134
www.altera.com

NI15V2-13.1

Handhook

http://www.altera.com

© 2014 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX are Reg. U.S. Pat.
& Tm. Off. and/or trademarks of Altera Corporation in the U.S. and other countries. All other trademarks and service marks are the property of their respective
holders as described at www.altera.com/common/legal.html. Altera warrants performance of its semiconductor products to current specifications in accordance
with Altera’s standard Warrant?/, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or
liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera. Altera
customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or
services.

o

QUALITY
150 9001:2008

NSAI Certified

Nios Il Software Developer’s Handbook January 2014 Altera Corporation

http://www.altera.com/common/legal.html

QA | |:| —E 5Y/A ® Contents

Chapter Revision Dates xi
Section I. Nios Il Software Development

Chapter 1. Overview of Nios Il Embedded Development

Prerequisites for Understanding the Nios Il Embedded Design Suite 1-1
Finding Nios ITEDS Files 1-1
Nios II Software Development Environment, 1-2
Nios IT EDS Development Flows 1-2
The Nios Il SBT Development Flow 1-2
NiosIIPrograms 1-3
Makefilesand the SBT 1-3
Nios I Software Project Types 1-4
Altera Software Packages for Embedded Systemso 1-5
Nios IT Embedded Design Examples i, 1-5
Hardware Examples 1-5
Software Examples 1-5
Third-Party Embedded Tools Support 1-6
Additional Nios I Information 1-6
Document Revision Historyl 1-7

Chapter 2. Getting Started with the Graphical User Interface

Getting Started with Nios II Softwarein Eclipse 2-1
The Nios Il SBT for Eclipse Workbench L. 2-2
Creating a Project 2-2
Navigating the Project 24
Building the Project 2-5
Configuring the FPGA 2-5
Running the Projecton Nios Il Hardware 2-5
Debugging the Project on Nios Il Hardware, 2-6
Creatinga Simple BSP 2-8

Makefiles and the Nios Il SBT for Eclipse 2-9
Eclipse Source Management 2-9
User Source Management ittt 2-11
BSP Source Management 2-12

Usingthe BSP Editor 2-12
Tcl Scripting and the Nios IIBSP Editor 2-12
Starting the Nios Il BSP Editor 2-13
The Nios II BSP Editor Screen Layout i 2-13
The Command Area i 2-13
The Console Area 2-18
Exporting a Tcl Script o 2-18
Creatinga New BSP 2-19
BSP Validation EXrors 2-19
Configuring Component Search Paths 2-20

Run Configurations in the SBT for Eclipse 2-20
The Project Tab o 2-21
The Target Connection Tab 2-21

January 2014 Altera Corporation Nios Il Software Developer’s Handbook

iv Contents
The Debugger Tab 2-21
Nios I Hardware v2 (beta)t e e e e e et e e e 2-21
TheMainTab 2-21
The Debugger Tab 2-22
Multi-Core Launches 2-22
Optimizing Project Build Time 2-22
Importing a Command-Line Project 2-22
Road Mapo 2-23
Import a Command-Line C/C++ Application oo oo 2-23
Import a Supporting Project 2-24
User-Managed Source Files 2-25
Packaging a Library for Reuse 2-25
Creating the User Library 2-25
Using the Library 2-26
Creating a Software Package 2-26
Programming Flash in Altera Embedded Systems 2-30
Starting the Flash Programmer 2-30
Creating a Flash Programmer Settings File, 2-30
The Flash Programmer Screen Layout 2-31
The Command Area 2-31
The Console Area 2-31
Saving a Flash Programmer Settings File 2-32
Flash Programmer Options e 2-32
Creating Memory Initialization Files 2-32
Memory Initialization Files for User-Defined Memories 2-33
Running a Nios II System with ModelSim L. 2-34
Using ModelSim with an SOPC Builder-Generated System 2-35
Using ModelSim with a Qsys-Generated System ... 2-35
Eclipse Usage NoOtes 2-38
Configuring Application and Library Properties, 2-38
Configuring BSP Properties i 2-38
Exclude from Build Not Supported 2-39
Selecting the Correct Launch Configuration Type 2-39
Target Connection Options 2-39
Renaming NiosII Projects 2-39
Running Shell Scripts from the SBT for Eclipse o o i 2-39
Must Use Nios II Build Configuration i 2-40
CDT Limitationso 2-40
Document Revision History 2-42
Chapter 3. Getting Started from the Command Line

Advantages of Command-Line Software Development 3-1
Outline of the Nios II SBT Command-Line Interface 3-1
Utilitieso 3-2
LIt oo 3-2
TalCommands 3-2
TelScripts . ..o oo 3-2
The Nios Il Command Shell 3-2
Getting Started in the SBT Command Line 3-3
What YouNeed 3-3
Creating hello_world for an Altera Development Board 34
Running hello_world on an Altera Development Board 3-5
Debugging hello_world 3-5
Software Build Tools Scripting Basics 3-7

Nios Il Software Developer’s Handbook January 2014 Altera Corporation

Contents v

Creating a BSP witha Script 3-7
Creating an Application Project witha Script oo ool 3-9
Running make 3-10
Creating Memory Initialization Files 3-10
Document Revision History 3-11

Chapter 4. Nios Il Software Build Tools

Road Map forthe SBT 4-2
What the Build Tools Create 4-2
Comparing the Command Line with Eclipse 4-3

Makefiles o 4-3
Modifying Makefiles 4-3
Makefile Targets 4-4

Nios IT Embedded Software Projects i 4-5
Applications and Libraries 4-5
Board Support Packages 4-5
Software Build Process 4-7

Common BSP Tasks 4-8
Adding the Nios II SBT to Your Tool Flow 4-9
Linking and Locating 4-10
Other BSP Tasks oo 4-17

Details of BSP Creation 4-20
BSP Settings File Creation 4-22
Generated and Copied Files 4-22
HALBSP Filesand Folders e 4-23
Linker Map Validation 4-27

Tcl Scripts for BSP Settings 4-27
Calling a Custom BSP Tcl Script 4-27

Revising Your BSP 4-30
Rebuilding Your BSP 4-30
Regenerating Your BSP 4-30
Updating Your BSP 4-32
Recreating Your BSP 4-33

Specifying BSP Defaults 4-35
Top Level Tcl Script for BSP Defaults 4-36
Specifying the Default stdio Device 4-37
Specifying the Default System Timer 4-37
Specifying the Default Memory Map i 4-38
Specifying Default Bootloader Parameters 4-38
Using Individual Default Tcl Procedures 4-39

Device Drivers and Software Packages i 4-39

Boot Configurations for Altera Embedded Software 4-40
Boot from Flash Configuration 4-40
Boot from Monitor Configuration 4-41
Run from Initialized Memory Configuration 4-41
Run-time Configurable Reset Configuration, 4-42

Altera-Provided Embedded Development Tools 4-42
Nios II Software Build Tool GUIs i 4-42
The Nios Il Command Shell e 4-44
The Nios I Command-Line Commands i 4-44

Restrictions 4-47

Document Revision History 4-47

January 2014 Altera Corporation Nios Il Software Developer’s Handbook

vi Contents

Section Il. Hardware Abstraction Layer

Chapter 5. Overview of the Hardware Abstraction Layer

Getting Started with the Hardware Abstraction Layer 5-1
HAL Architecture for Embedded Software Systems 5-2
Services 5-2
Applications versus Drivers 5-3
GenericDeviceModels 5-3
CStandard Library—newlib 54
Embedded Hardware Supported by the HAL 5-4
Nios II Processor Core SUppOrt ... 5-4
Supported Peripherals 5-4
MPU SUppOrt ... 5-6
MMU SUpport 5-6
Document Revision History 5-6

Chapter 6. Developing Programs Using the Hardware Abstraction Layer

HAL BSP Settingst 6-2
The Nios Il Embedded Project Structure 62
The system.h System Description File 6—4
Data Widths and the HAL Type Definitions 6-5
UNIX-Style Interface 6-5
File Systemo 6-6
Using Character-Mode Devices 6-8
Standard Input, Standard Output and Standard Error, 6-8
General Access to Character Mode Devicesot et 6-9
L 15 (=1 ¢ 1= 6-9
Jdev/nUll . .. 69
Lightweight Character-Mode I/O 69
Altera Logging Functions 69
Using File Subsystems 6-15
Host-Based File System 6-15
Using Timer Devices 6-16
System Clock Driver 6-16
AT o 6-17
Timestamp Driver 6-18
Using Flash Devices e 6-19
Simple Flash Access 620
Block Erasure or Corruption o i 6-21
Fine-Grained Flash ACCESSottt e e 6-21
Using DMA DevVICeS e 6-25
DMA Transmit Channels e e e 6-26
DMA Receive Channels e e e 6-27
Memory-to-Memory DMA Transactions i, 6-29
Using Interrupt Controllers 6-30
Reducing Code Footprint in Embedded Systems 6-30
Enable Compiler Optimizations 6-31
Use Reduced Device DIiversttt e et et e et et 6-31
Reduce the File Descriptor Pool 6-31
Use /dev/null e 6-32
UseaSmaller FileI/O Library e 6-32
Use the Lightweight Device Driver APL 6-34
Use the Minimal Character-Mode API e 6-35

Nios Il Software Developer’s Handbook January 2014 Altera Corporation

Contents vii

Eliminate Unused Device Drivers i 6-36
Eliminate Unneeded Exit Code i 6-36
Turn off C++ Support ... 6-37
Boot Sequence and Entry Point 6-37
Hosted Versus Free-Standing Applications i 6-37
Boot Sequence for HAL-Based Programs i 6-38
Customizing the Boot Sequence 6-38
Memory Usage 6-39
Memory Sections 6-39
Assigning Code and Data to Memory Partitions 6—40
Placementof the Heapand Stack 6-42
Global Pointer Register 643
Boot Modes 644
Working with HAL Source Files 644
Finding HAL Files 644
Overriding HAL Functions e 6-45
Document Revision History 645

Chapter 7. Developing Device Drivers for the Hardware Abstraction Layer

Driver Integrationinthe HAL APT 7-1
The HAL Peripheral-Specific APL 7-2
Preparing for HAL Driver Development 7-2
Development Flow for Creating Device Drivers 7-2
Nios IT Hardware Design Concepts i, 7-3
The Relationship Between the .sopcinfo Fileand system.h 7-3
Using the System Generation Tool to Optimize Hardware 7-3
Components, Devices, and Peripherals 7-3
Accessing Hardware 7-3
Creating Embedded Drivers for HAL Device Classes oo oot 7-5
Character-Mode Device DIiversottt e et 7-5
File Subsystem Drivers 7-8
Timer Device Drivers e 7-8
Flash Device DIivVersttt e e e e e e e 7-9
DMA Device DIivers e 7-10
Ethernet Device DIiversottt e e e e e 7-12
Creating a Custom Device Driver forthe HAL 7-16
Header Files and alt_sys_init.c 7-16
Device Driver Source Codeot e 7-18
Integrating a Device Driverinthe HAL 7-18
OV OV OW .« .ttt e e 7-18
Assumptions and Requirements 7-19
The Nios IT BSP Generatorttt e e e e e e e 7-20
File Names and Locationst e e e e 7-21
Driver and Software Package Tcl Script Creation 7-21
Reducing Code Footprint in HAL Embedded Drivers 7-30
Provide Reduced Footprint Drivers............ 7-31
Support the Lightweight Device Driver API 7-31
HAL Namespace Allocation i 7-32
Overriding the HAL Default Device Drivers i 7-33
Document Revision History 7-33

Section lll. Advanced Programming Topics

January 2014 Altera Corporation Nios Il Software Developer’s Handbook

viii Contents

Chapter 8. Exception Handling

Nios IT Exception Handling Overview i, 8-1
Exception Handling Terminology i 82
Interrupt Controllers 8-3
Latency and Response Time 8-5
How the Hardware Works 8-6

Nios II Interrupt Service Routinesl 87
HAL APIs for Hardware Interrupts 87
HAL ISR Restrictions e 8-11
Writingan ISR 8-12
Registering an ISR with the Enhanced Interrupt API 8-14
Enabling and Disabling Interrupts 8-15
Configuring an External Interrupt Controller 8-15
CExample 8-16
Upgrading to the Enhanced HAL Interrupt APL 8-17

Improving Nios II ISR Performance i, 8-18
Software Performance Improvements 8-18
Hardware Performance Improvements i 8-23

Debugging Nios ITISRS 8-25

HAL Exception Handling System Implementation 8-26
Exception Handling System Structure 8-26
General Exception Funnel 8-27
Hardware Interrupt Funnel 8-28
Software Exception Funnel 8-29
Invalid Instructions 8-32

The Nios II Instruction-Related Exception Handler, 8-33
Writing an Instruction-Related Exception Handler 8-33
Registering an Instruction-Related Exception Handler 8-34
Removing an Instruction-Related Exception Handler 8-35

Document Revision History 8-35

Chapter 9. Cache and Tightly-Coupled Memory

Nios II Cache Implementation 9-1
HAL API Functions for Managing Cache o i i it 9-2
Initializing the Nios Il Cache after Reset 9-2
FOr HAL USEIS . ..ot e e e e e e e e e e e 9-3
Nios II Device Driver Cache Considerationsc..iiiininiii e 94
FOr HAL USEIS . ..ot e e e e e e e e e 94
Cache Considerations for Writing Program Loaders 9-5
For Users of the HAL e 9-5
Managing Cache in Multi-Master and Multi-Processor Systems 9-5
Bit-31 Cache Bypass 9-6
FOr HAL USEIS . ..ottt e e e e e e e e 9-6
Nios II Tightly-Coupled Memory 9-7
Document Revision History 9-7

Chapter 10. MicroC/0S-Il Real-Time Operating System

Overview of the MicroC/OS-IL RTOS i e e 10-1
Further Information i e e e e 10-1
Licensing i 10-2

Other RTOS Providers e e e e e e e e e 10-2

The Nios II Implementation of MicroC/OS-II i 10-2
MicroC/OS-IT Architecturet e e e e 10-2

Nios Il Software Developer’s Handbook January 2014 Altera Corporation

Contents ix

MicroC/OS-II Thread-Aware Debugging i 10-3
MicroC/OS-II Device DIivVersot e e e e e e 10-3
Thread-Safe HAL Driversttt et e et e e e e e e e e 10-4
The newlib ANSIC Standard Library 10-5
Interrupt Service Routines for MicroC/OS-II i i 10-6
Implementing MicroC/OS-II Projects for the Nios Il Processor 10-6
Document Revision History 10-6

Chapter 11. Ethernet and the NicheStack TCP/IP Stack - Nios Il Edition

Prerequisites for Understanding the NicheStack TCP/IP Stack 11-2
Introduction to the NicheStack TCP/IP Stack - Nios Il Edition 11-2
The NicheStack TCP/IP Stack Files and Directories, 11-3
Licensing i 11-3
Other TCP/IP Stack Providers for the Nios Il Processor 11-3
Using the NicheStack TCP/IP Stack - Nios II Edition i, 11-3
Nios II System Requirements 11-4
The NicheStack TCP/IP Stack Tasksottt e e 114
Initializing the Stack 11-4
Calling the Sockets Interface 11-7
Configuring the NicheStack TCP/IP Stack in a Nios Il Program 11-9
NicheStack TCP/IP Stack General Settings 11-9
IP OPHONS ..ottt 11-10
TCP OPLONS ...ttt 11-10
Further Information 11-10
Known Limitations 11-10
Document Revision History 11-11

Chapter 12. Read-Only Zip File System

Using the Read-Only Zip File System ina Project o i i ... 12-1
Preparing the Zip File 12-1
Programming the Zip Fileto Flash 122

Document Revision History 12-2

Chapter 13. Publishing Component Information to Embedded Software

Embedded Component Information Flow 13-1
Embedded Software Assignments 13-2
CMacro Namespace ...ttt 13-2
Configuration Namespace i 13-3
Memory Initialization Namespace 13-6
Document Revision History 13-7

Section IV. Reference Material

Chapter 14. HAL API Reference

HAL APTFUNCHONS 14-1
HAL Standard Types 14-79
Document Revision History 14-80

Chapter 15. Nios Il Software Build Tools Reference

Nios II Software Build Tools UtIIHIESot ottt e e e 15-1
Logging Levels 152
Setting Values 152

January 2014 Altera Corporation Nios Il Software Developer’s Handbook

X Contents

Utility and Script Summary 15-3
nios2-app-generate-makefile 154
nios2-bsp-create-settings 15-6
nios2-bsp-generate-files 15-8
nios2-bsp-query-settings 15-9
nios2-bsp-update-settings 15-11
nios2-lib-generate-makefile L 15-13
nios2-bsp-editor 15-15
nios2-app-update-makefile o i 15-16
nios2-lib-update-makefile 15-19
nios2-swexample-create i i 15-22
nios2-elf-insert 15-23
nios2-elf-qUery 15-24
nios2-flash-programmer-generate 15-25
NIOS2-DSP ..o 15-28
nios2-bsp-console 15-30
Nios I Design Example Scripts 15-31
create-this-bsp 15-32
create-this-app 15-32
Finding create-this-app and create-this-bsp o 15-32
Settings Managed by the Software Build Tools, 15-34
Overview of BSP Settings 15-34
Overview of Component and Driver Settings, 15-35
Settings Reference 15-37
Application and User Library Makefile Variables, 15-73
Application Makefile Variables 15-73
User Library Makefile Variables 15-75
Standard Build Flag Variables 15-76
Software Build Tools TclCommands 15-76
Tcl Command Environments 15-76
Tcl Commands for BSP Settings i 15-76
Tcl Commands for BSP Generation Callbacks oot 15-104
Tcl Commands for Drivers and Packageso .. 15-113
Software Build Tools Path Names o i i 15-122
Command Arguments 15-122
Object File Directory Tree i 15-123
Document Revision History i i 15-124

Additional Information

How to Find Further Informationt e e Info-1
How to Contact AILeraottt e e e Info-1
Typographic Conventions Info-2

Nios Il Software Developer’s Handbook January 2014 Altera Corporation

Chapter Revision Dates
AIERA P

The chapters in this document, Nios II Software Developer’s Handbook, were revised
on the following dates. Where chapters or groups of chapters are available separately,
part numbers are listed.

Chapter 1. Overview of Nios II Embedded Development
Revised: January 2014
Part Number: NI152001-13.1.0

Chapter 2. Getting Started with the Graphical User Interface
Revised: January 2014
Part Number: NI152017-13.1.0

Chapter 3. Getting Started from the Command Line
Revised: January 2014
Part Number: NI152014-13.1.0

Chapter 4. Nios II Software Build Tools
Revised: January 2014
Part Number: NII52015-13.1.0

Chapter 5. Overview of the Hardware Abstraction Layer
Revised: May 2011
Part Number: NII52003-11.0.0

Chapter 6. Developing Programs Using the Hardware Abstraction Layer
Revised: January 2014
Part Number: NII52004-13.1.0

Chapter 7. Developing Device Drivers for the Hardware Abstraction Layer
Revised: May 2011
Part Number: NII52005-11.0.0

Chapter 8. Exception Handling
Revised: May 2011
Part Number: NI152006-11.0.0

Chapter 9. Cache and Tightly-Coupled Memory
Revised: May 2011
Part Number: NI152007-11.0.0

Chapter 10. MicroC/OS-II Real-Time Operating System
Revised: May 2011
Part Number: NII52008-11.0.0
Chapter 11. Ethernet and the NicheStack TCP/IP Stack - Nios II Edition
Revised: May 2011
Part Number: NII52013-11.0.0

Chapter 12. Read-Only Zip File System

January 2014 Altera Corporation Nios Il Software Developer’s Handbook

Xii

Chapter Revision Dates

Chapter 13.

Chapter 14.

Chapter 15.

Revised: May 2011
Part Number: NII52012-11.0.0

Publishing Component Information to Embedded Software
Revised: May 2011
Part Number: NI152018-11.0.0

HAL API Reference
Revised: May 2011
Part Number: NII52010-11.0.0

Nios II Software Build Tools Reference
Revised: January 2014
Part Number: NII52016-13.1.0

Nios Il Software Developer’s Handbook

January 2014 Altera Corporation

fAhl |:| ==/ Section I. Nios Il Software Development

This section introduces Nios® II embedded software development, including the
available tools and tool flows.

This section includes the following chapters:

m Chapter 1, Overview of Nios Il Embedded Development

m Chapter 2, Getting Started with the Graphical User Interface
m Chapter 3, Getting Started from the Command Line

m Chapter 4, Nios II Software Build Tools

January 2014 Altera Corporation Nios Il Software Developer’s Handbook

-2 Section I: Nios Il Software Development

Nios Il Software Developer’s Handbook January 2014 Altera Corporation

/NE

NI152001-13.1.0

= A 1. Overview of Nios I

o Embedded Development

The Nios® II Software Developer’s Handbook provides the basic information needed to
develop embedded software for the Altera® Nios II processor. This handbook
describes the Nios II software development environment, the Nios Il Embedded
Design Suite (EDS) tools available to you, and the process for developing software.

This chapter provides a high-level overview of the embedded software development
environments for the Nios II processor, and contains the following sections:

m “Prerequisites for Understanding the Nios II Embedded Design Suite” on page 1-1
m “Finding Nios II EDS Files” on page 1-1
m “Nios II Software Development Environment” on page 1-2

m “Nios II EDS Development Flows” on page 1-2

“Nios II Programs” on page 1-3

“Altera Software Packages for Embedded Systems” on page 1-5
“Nios II Embedded Design Examples” on page 1-5
“Third-Party Embedded Tools Support” on page 1-6

“Additional Nios II Information” on page 1-6

Prerequisites for Understanding the Nios Il Embedded Design Suite

The Nios 1I Software Developer’s Handbook assumes you have a basic familiarity with
embedded processor concepts. You do not need to be familiar with any specific Altera
technology or with Altera development tools. Familiarity with Altera hardware
development tools can give you a deeper understanding of the reasoning behind the
Nios II software development environment. However, software developers can create
and debug applications without further knowledge of Altera technology.

Finding Nios Il EDS Files

When you install the Nios II EDS, you specify a root directory for the EDS file
structure. This root directory must be adjacent to the Quartus® II installation. For
example, if the Nios I EDS 10.0 is installed on the Windows operating system, the
root directory might be c:\altera\100\nios2eds.

For simplicity, this handbook refers to this directory as <Nios II EDS install path>.

© 2014 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX are Reg. U.S. Pat. & Tm. Off.
and/or trademarks of Altera Corporation in the U.S. and other countries. All other trademarks and service marks are the property of their respective holders as described at
www.altera.com/common/legal.html. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera’s standard warranty, but
reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
specifications before relying on any published information and before placing orders for products or services.

Nios Il Software Developer’s Handbook IM|

January 2014

Subscribe

http://www.altera.com/common/legal.html
https://www.altera.com/servlets/subscriptions/alert?id=NII52001

1-2 Chapter 1: Overview of Nios Il Embedded Development
Nios Il Software Development Environment

Nios Il Software Development Environment

The Nios II EDS provides a consistent software development environment that works
for all Nios II processor systems. With the Nios II EDS running on a host computer, an
Altera FPGA, and a JTAG download cable (such as an Altera USB-Blaster™ download
cable), you can write programs for and communicate with any Nios II processor
system. The Nios II processor’s JTAG debug module provides a single, consistent
method to connect to the processor using a JTAG download cable. Accessing the
processor is the same, regardless of whether a device implements only a Nios II
processor system, or whether the Nios II processor is embedded deeply in a complex
multiprocessor system. Therefore, you do not need to spend time manually creating
interface mechanisms for the embedded processor.

The Nios II EDS includes proprietary and open-source tools (such as the GNU C/C++
tool chain) for creating Nios II programs. The Nios II EDS automates board support
package (BSP) creation for Nios II processor-based systems, eliminating the need to
spend time manually creating BSPs. The BSP provides a C/C++ runtime
environment, insulating you from the hardware in your embedded system. Altera
BSPs contain the Altera hardware abstraction layer (HAL), an optional RTOS, and
device drivers.

Nios Il EDS Development Flows

A development flow is a way of using a set of development tools together to create a
software project. The Nios II EDS provides the following development flows for
creating Nios II programs:

m The Nios II Software Build Tools (SBT), which provides two user interfaces:
m The Nios II SBT command line
m The Nios II SBT for Eclipse™

The Nios Il SBT Development Flow

The Nios I SBT allows you to create Nios II software projects, with detailed control
over the software build process. The same Nios II SBT utilities, scripts and Tcl
commands are available from both the command line and the Nios II SBT for Eclipse
graphical user interface (GUI).

The SBT allows you to create and manage single-threaded programs as well as
complex applications based on an RTOS and middleware libraries available from
Altera and third-party vendors.

The SBT provides powerful Tcl scripting capabilities. In a Tcl script, you can query
project settings, specify project settings conditionally, and incorporate the software
project creation process in a scripted software development flow. Tcl scripting is
supported both in Eclipse and at the command line.
“ e For information about Tcl scripting, refer to the Nios I Software Build Tools chapter of
the Nios 1I Software Developer’s Handbook.

Nios Il Software Developer’s Handbook January 2014 Altera Corporation

http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf

Chapter 1: Overview of Nios Il Embedded Development 1-3

Nios Il Programs

The Nios Il SBT for Eclipse

The Nios II SBT for Eclipse is a thin GUI layer that runs the Nios II SBT utilities and
scripts behind the scenes, presenting a unified development environment. The SBT for
Eclipse provides a consistent development platform that works for all Nios II
processor systems. You can accomplish all software development tasks within Eclipse,
including creating, editing, building, running, debugging, and profiling programs.

The Nios II SBT for Eclipse is based on the popular Eclipse framework and the Eclipse
C/C++ development toolkit (CDT) plugins. The Nios II SBT creates your project
makefiles for you, and Eclipse provides extensive capabilities for interactive
debugging and management of source files.

The SBT for Eclipse also allows you to import and debug projects you created in the
Nios I Command Shell.

For details about the Nios II SBT for Eclipse, refer to the Getting Started with the
Graphical User Interface chapter of the Nios II Software Developer’s Handbook. For details
about Eclipse, visit the Eclipse Foundation website (www.eclipse.org).

The Nios Il SBT Command Line

In the Nios II SBT command line development flow, you create, modify, build, and
run Nios II programs with Nios II SBT commands typed at a command line or
embedded in a script. You run the Nios II SBT commands from the Nios II Command
Shell.

For further information about the Nios II SBT in command-line mode, refer to the
Getting Started from the Command Line chapter of the Nios II Software Developer’s
Handbook.

To debug your command-line program, import your SBT projects to Eclipse. You can
further edit, rebuild, run, and debug your imported project in Eclipse.

Nios Il Programs

Each Nios II program you develop consists of an application project, optional user
library projects, and a BSP project. You build your Nios II program to create an
Executable and Linking Format File (.elf) which runs on a Nios II processor.

The Nios I SBT creates software projects for you. Each project is based on a makefile.

Makefiles and the SBT

The makefile is the central component of a Nios II software project, whether the
project is created with the Nios II SBT for Eclipse, or on the command line. The
makefile describes all the components of a software project and how they are
compiled and linked. With a makefile and a complete set of C/C++ source files, your
Nios II software project is fully defined.

As a key part of creating a software project, the SBT creates a makefile for you. Nios II
projects are sometimes called “user-managed,” because you, the user, are responsible
for the content of the project makefile. You use the Nios II SBT to control what goes in
the makefile.

January 2014 Altera Corporation Nios Il Software Developer’s Handbook

http://www.altera.com/literature/hb/nios2/n2sw_nii52017.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52017.pdf
http://www.eclipse.org/org/
http://www.altera.com/literature/hb/nios2/n2sw_nii52014.pdf

1-4 Chapter 1: Overview of Nios Il Embedded Development
Nios Il Programs

“ =@ The Nios II Software Build Tools chapter of the Nios II Software Developer’s Handbook
provides detailed information about creating makefiles.

Nios Il Software Project Types

The following sections describe the project types that constitute a Nios II program.

Application Project

A Nios II C/C++ application project consists of a collection of source code, plus a
makefile. A typical characteristic of an application is that one of the source files
contains function main (). An application includes code that calls functions in libraries
and BSPs. The makefile compiles the source code and links it with a BSP and one or
more optional libraries, to create one .elf file.

User Library Project

A user library project is a collection of source code compiled to create a single library
archive file (.a). Libraries often contain reusable, general purpose functions that
multiple application projects can share. A collection of common arithmetical functions
is one example. A user library does not contain a main () function.

BSP Project

A Nios I BSP project is a specialized library containing system-specific support code.
A BSP provides a software runtime environment customized for one processor in a
Nios II hardware system. The Nios II EDS provides tools to modify settings that
control the behavior of the BSP.

A BSP contains the following elements:

m Hardware abstraction layer—For information, refer to the Overview of the Hardware
Abstraction Layer chapter of the Nios II Software Developer’s Handbook.

m Optional custom newlib C standard library—For information, refer to the
Overview of the Hardware Abstraction Layer chapter of the Nios II Software Developer’s
Handbook. The complete HTML documentation for newlib resides in the
Nios II EDS directory.

m Device drivers—For information, refer to “Nios II Embedded Software Projects” in
the Nios II Software Build Tools chapter of the Nios II Software Developer’s Handbook.

m Optional software packages—For information, refer to “Altera Software Packages
for Embedded Systems”.

m Optional real-time operating system—For information, refer to the MicroC/OS-11
Real-Time Operating System chapter of the Nios II Software Developer’s Handbook.

Nios Il Software Developer’s Handbook January 2014 Altera Corporation

http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52003.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52003.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52003.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52008.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52008.pdf

Chapter 1: Overview of Nios Il Embedded Development 1-5
Altera Software Packages for Embedded Systems

Altera Software Packages for Embedded Systems

The Nios II EDS includes software packages to extend the capabilities of your
software. You can include these software packages in your BSP. Table 1-1 shows those
Altera Nios II software packages that are distributed with the Nios II EDS.

Table 1-1. Software Packages

Name Description
NicheStack TCP/IP Stack - Refer to the Ethernet and the NicheStack TCP/IP Stack - Nios I/
Nios Il Edition Edition chapter of the Nios Il Software Developer’s Handbook.

Refer to the Read-Only Zip File System chapter of the Nios I/

Read-only zip file system Software Developer’s Handbook.

Refer to the Developing Programs Using the Hardware Abstraction

Host file system Layer chapter of the Nios Il Software Developer’s Handbook.

Additional software packages are available from Altera’s partners. For a complete list,
refer to the Embedded Software page of the Altera website.

Nios Il Embedded Design Examples

The Nios II EDS includes documented hardware design examples and software
examples to demonstrate all prominent features of the Nios II processor and the
development environment. The examples can help you start the development of your
custom design. They provide a stable starting point for exploring design options.
Also, they demonstrate many commonly used features of the Nios II EDS.

Hardware Examples

You can run Nios II hardware designs on many Altera development boards. The
hardware examples for each Altera development board can be found in the kit
installation provided with the board, and on this website:

http://www.altera.com/products/devkits/kit-dev_platforms.jsp

Alternatively, you can use the Nios II Ethernet Standard design located at iittp://
www.altera.com/support/examples/nios2/exm-net-std-de.html or Nios Il with MMU design
located at http://wwuw.altera.com/support/examples/nios2/exm-mmu.html.

L=~ The Nios Il with MMU design is intended to demonstrate Linux. This design does not
work with the SBT, because the SBT does not support the Nios II MMU.

Software Examples

You can run Nios II software examples that run on many of the hardware design
examples described in the previous section.

The Nios II software examples include scripts and templates to create the software
projects using the Nios II SBT. These scripts and templates do everything necessary to
create a BSP and an application project for each software example.

January 2014 Altera Corporation Nios Il Software Developer’s Handbook

http://www.altera.com/literature/hb/nios2/n2sw_nii52013.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52013.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52012.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52004.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52004.pdf
http://www.altera.com/support/examples/nios2/exm-net-std-de.html
http://www.altera.com/support/examples/nios2/exm-net-std-de.html
http://www.altera.com/support/examples/nios2/exm-mmu.html
http://www.altera.com/products/devkits/kit-dev_platforms.jsp
http://www.altera.com/products/ip/processors/nios2/tools/embed-partners/ni2-embed-partners.html

1-6 Chapter 1: Overview of Nios Il Embedded Development
Third-Party Embedded Tools Support

Figure 1-1 shows the directory structure under each hardware design example. There
are multiple software examples and BSP examples, each with its own directory. Each
software example directory contains a create-this-app script and each BSP example
directory contains a create-this-bsp script. These scripts create software projects, as
demonstrated in “Getting Started with Eclipse” in the Getting Started from the
Command Line chapter of the Nios II Software Developer’s Handbook.

Figure 1-1. Software Design Example Directory Structure

<design> (e.g. standard)

Quartus Il files (e.g. standard.qpf)

Hardware system files (e.g. standard.sopcinfo)

RN

software_examples

r;‘ app
/—;‘ software examples (e.g. hello_world)

create-this-app
/—j bsp
/—j BSP examples (e.g. hal_standard)

create-this-bsp

Third-Party Embedded Tools Support

Several third-party vendors support the Nios II processor, providing products such as
design services, operating systems, stacks, other software libraries, and development
tools.

“ e For the most up-to-date information about third-party support for the Nios II
processor, visit the Nios II Processor page of the Altera website.

Additional Nios Il Information

This handbook is one part of the complete Nios II processor documentation suite.
Consult the following references for further Nios II information:

m The Nios II Processor Reference Handbook defines the processor hardware
architecture and features, including the instruction set architecture.

m The Embedded Peripherals IP User Guide provides a reference for the peripherals
distributed with the Nios II processor. This handbook describes the hardware
structure and Nios II software drivers for each peripheral.

Nios Il Software Developer’s Handbook January 2014 Altera Corporation

http://www.altera.com/literature/hb/nios2/n2sw_nii52014.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52014.pdf
www.altera.com/devices/processor/nios2/ni2-index.html
http://www.altera.com/literature/hb/nios2/n2cpu_nii5v1.pdf
http://www.altera.com/literature/ug/ug_embedded_ip.pdf

Chapter 1: Overview of Nios Il Embedded Development 1-7
Document Revision History

m The Embedded Design Handbook describes how to use Altera software development
tools effectively, and recommends design styles and practices for developing,
debugging, and optimizing embedded systems.

m The Altera Knowledge Database is an Internet resource that offers solutions to
frequently asked questions with an easy-to-use search engine. Visit the Knowledge
Database page of the Altera website.

m Altera application notes and tutorials offer step-by-step instructions on using the
Nios II processor for a specific application or purpose. These documents are
available on the Literature: Nios II Processor page of the Altera website.

m The Nios II EDS documentation launchpad. The launchpad is an HTML page
installed with the Nios II EDS, which provides links to Nios II documentation,
examples, and other resources. The way you open the launchpad depends on your
software platform.

In the Windows operating system, on the Start menu, point to Programs >
Altera > Nios II EDS, and click Nios II <version> Documentation.

In the Linux operating system, open <Nios II EDS install path>/documents/
index.html in a web browser.

Document Revision History

Table 1-2 shows the revision history for this document.

Table 1-2. Document Revision History (Part 1 of 2)

Date Version Changes
m Removed references to Nios Il IDE.
January 2014 13.1.0 | = Removed references to Nios II G2H.
m Updated the “Hardware Examples” section.
May 2011 11.0.0 | Introduced Qsys system integration tool
February 2011 10.1.0 | Removed “Referenced Documents” section.
July 2010 10,00 gljat‘arltlluastiﬁntg;nla;hod changed; Nios Il EDS always installed in a directory adjacent to
m Described the Nios Il Software Build Tools for Eclipse.
November 2009 910 |™ Nios Il IDE information moved to Appendix A.
m Detailed Nios Il Software Build Tools utility information moved to Nios I/ Software Build
Tools.
m Incorporate information formerly in Altera-Provided Development Tools chapter.
m Describe BSP Editor.
March 2009 9.00 |™ Reorganize and update information and terminology to clarify role of Nios Il Software

Build Tools.
m Describe -data argument for IDE command-line tools.
m Correct minor typographical errors.

January 2014 Altera Corporation

Nios Il Software Developer’s Handbook

http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf
http://www.altera.com/literature/hb/nios2/edh_ed_handbook.pdf
http://www.altera.com/support/kdb/kdb-index.jsp
http://www.altera.com/support/kdb/kdb-index.jsp
www.altera.com/literature/lit-nio2.jsp
http://www.altera.com/literature/hb/nios2/edh_ed_handbook.pdf

Chapter 1: Overview of Nios Il Embedded Development

Document Revision History

Table 1-2. Document Revision History (Part 2 of 2)

Date Version Changes
m Add “What’'s New” section.
m SOPC Information File (.sopcinfo).
May 2008 8.0.0 ,
m Design examples removed from EDS.
m Memory management unit (MMU) added to Nios Il core.
October 2007 7.2.0 | Maintenance release.
m Revise entire chapter to introduce Nios Il EDS design flows, Nios Il programs, Nios Il
Software Build Tools, and Nios Il BSPs.
May 2007 710 m Add table of contents to Introduction section.
m Add “Referenced Documents” section.
March 2007 7.0.0 | Maintenance release.
November 2006 6.1.0 | Maintenance release.
May 2006 6.0.0 | Maintenance release.
October 2005 5.1.0 | Maintenance release.
May 2005 5.0.0 | Maintenance release.
May 2004 1.0 Initial release.

Nios Il Software Developer’s Handbook

January 2014 Altera Corporation

/NE

NII52017-13.1.0

=/ 2. Getting Started with the Graphical

® User Interface

The Nios® II Software Build Tools (SBT) for Eclipse™ is a set of plugins based on the
Eclipse™ framework and the Eclipse C/C++ development toolkit (CDT) plugins. The
Nios II SBT for Eclipse provides a consistent development platform that works for all
Nios II embedded processor systems. You can accomplish all Nios II software
development tasks within Eclipse, including creating, editing, building, running,
debugging, and profiling programs.

This chapter familiarizes you with the features of the Nios II SBT for Eclipse. This
chapter contains the following sections:

m “Getting Started with Nios II Software in Eclipse”
m “Makefiles and the Nios II SBT for Eclipse” on page 2-9
“Using the BSP Editor” on page 2-12

“Run Configurations in the SBT for Eclipse” on page 2-20
“Optimizing Project Build Time” on page 2-22
“Importing a Command-Line Project” on page 2-22
“Packaging a Library for Reuse” on page 2-25

“Creating a Software Package” on page 2-26

“Programming Flash in Altera Embedded Systems” on page 2-30

“Creating Memory Initialization Files” on page 2-32
m “Running a Nios II System with ModelSim” on page 2-34
m “Eclipse Usage Notes” on page 2-37

Getting Started with Nios Il Software in Eclipse

Writing software for the Nios II processor is similar to writing software for any other
microcontroller family. The easiest way to start designing effectively is to purchase a
development kit from Altera that includes documentation, a ready-made evaluation
board, a getting-started reference design, and all the development tools necessary to
write Nios II programs.

Modifying existing code is a common, easy way to learn to start writing software in a
new environment. The Nios II Embedded Design Suite (EDS) provides many example
software designs that you can examine, modify, and use in your own programs. The
provided examples range from a simple “Hello world” program, to a working RTOS
example, to a full TCP/IP stack running a web server. Each example is documented
and ready to compile.

© 2014 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX are Reg. U.S. Pat. & Tm. Off.
and/or trademarks of Altera Corporation in the U.S. and other countries. All other trademarks and service marks are the property of their respective holders as described at
www.altera.com/common/legal.html. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera’s standard warranty, but
reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
specifications before relying on any published information and before placing orders for products or services.

Nios Il Software Developer’s Handbook a

January 2014

Subscribe

http://www.altera.com/common/legal.html
https://www.altera.com/servlets/subscriptions/alert?id=NII52017

2-2

Chapter 2: Getting Started with the Graphical User Interface
Getting Started with Nios Il Software in Eclipse

This section guides you through the most fundamental operations in the Nios II SBT
for Eclipse in a tutorial-like fashion. It shows how to create an application project for
the Nios II processor, along with the board support package (BSP) project required to
interface with your hardware. It also shows how to build the application and BSP
projects in Eclipse, and how to run the software on an Altera® development board.

The Nios Il SBT for Eclipse Workbench

The term “workbench” refers to the Nios II SBT for Eclipse desktop development
environment. The workbench is where you edit, compile and debug your programs in
Eclipse.

Perspectives, Editors, and Views

Each workbench window contains one or more perspectives. Each perspective
provides a set of capabilities for accomplishing a specific type of task.

Most perspectives in the workbench comprise an editor area and one or more views.
An editor allows you to open and edit a project resource (i.e., a file, folder, or project).
Views support editors, and provide alternative presentations and ways to navigate
the information in your workbench.

Any number of editors can be open at once, but only one can be active at a time. The
main menu bar and toolbar for the workbench window contain operations that are
applicable to the active editor. Tabs in the editor area indicate the names of resources
that are currently open for editing. An asterisk (*) indicates that an editor has unsaved
changes. Views can also provide their own menus and toolbars, which, if present,
appear along the top edge of the view. To open the menu for a view, click the
drop-down arrow icon at the right of the view’s toolbar or right-click in the view. A
view might appear on its own, or stacked with other views in a tabbed notebook.

For detailed information about the Eclipse workbench, perspectives, and views, refer
to the Eclipse help system.

Before you create a Nios II project, you must ensure that the Nios II perspective is
visible. To open the Nios II perspective, on the Window menu, point to Open
Perspective, then Other, and click Nios II

The Altera Bytestream Console

The workbench in Eclipse for Nios Il includes a bytestream console, available through
the Eclipse Console view. The Altera bytestream console enables you to see output
from the processor’s stdout and stderr devices, and send input to its stdin device.
For information about the Altera bytestream console, see “Using the Altera
Bytestream Console” on page 2-8.

Creating a Project

In the Nios II perspective, on the File menu, point to Nios II Application and BSP
from Template. The Nios II Application and BSP from Template wizard appears.
This wizard provides a quick way to create an application and BSP at the same time.

Alternatively, you can create separate application, BSP and user library projects.

Nios Il Software Developer’s Handbook January 2014 Altera Corporation

Chapter 2: Getting Started with the Graphical User Interface 2-3
Getting Started with Nios Il Software in Eclipse

Specifying the Application

In the first page of the Nios II Application and BSP from Template wizard, you
specify a hardware platform, a project name, and a project template. You optionally
override the default location for the application project, and specify a processor name
if you are targeting a multiprocessor hardware platform.

You specify a BSP in the second page of the wizard.

Specifying the Hardware Platform

You specify the target hardware design by selecting a SOPC Information File
(.sopcinfo) in the SOPC Information File name box.

Specifying the Project Name
Select a descriptive name for your project. The SBT creates a folder with this name to
contain the application project files.

Letters, numbers, and the underscore (_) symbol are the only valid project name
characters. Project names cannot contain spaces or special characters. The first
character in the project name must be a letter or underscore. The maximum filename
length is 250 characters.

The SBT also creates a folder to contain BSP project files, as described in “Specifying
the BSP”.

Specifying the Project Template

Project templates are ready-made, working software projects that serve as examples to
show you how to structure your own Nios II projects. It is often easier to start with a
working project than to start a blank project from scratch.

You select the project template from the Templates list.

The hello_world template provides an easy way to create your first Nios II project and
verify that it builds and runs correctly.

Specifying the Project Location

The project location is the parent directory in which the SBT creates the project folder.
By default, the project location is under the directory containing the .sopcinfo file, in a
folder named software.

To place your application project in a different folder, turn off Use default location,
and specify the path in the Project location box.

Specifying the Processor

If your target hardware contains multiple Nios II processors, CPU name contains a list
of all available processors in your design. Select the processor on which your software
is intended to run.

Specifying the BSP

When you have finished specifying the application project in the first page of the
Nios II Application and BSP from Template wizard, you proceed to the second page
by clicking Next.

January 2014 Altera Corporation Nios Il Software Developer’s Handbook

2-4

Chapter 2: Getting Started with the Graphical User Interface
Getting Started with Nios Il Software in Eclipse

On the second page, you specify the BSP to link with your application. You can create
a new BSP for your application, or select an existing BSP. Creating a new BSP is often
the simplest way to get a project running the first time.

You optionally specify the name and location of the BSP.

Specifying the BSP Project Name

By default, if your application project name is <project>, the BSP is named
<project>_bsp. You can type in a different name if you prefer. The SBT creates a
directory with this name, to contain the BSP project files. BSP project names are
subject to the same restrictions as application project names, as described in
“Specifying the Project Name”.

Specifying the BSP Project Location

The BSP project location is the parent directory in which the SBT creates the folder.
The default project location is the same as the default location for an application
project. To place your BSP in a different folder, turn off Use default location, and
specify the BSP location in the Project location box.

Selecting an Existing BSP

As an alternative to creating a BSP automatically from a template, you can associate
your application project with a pre-existing BSP. Select Select an existing BSP project
from your workspace, and select a BSP in the list. The Create and Import buttons to
the right of the existing BSP list provide convenient ways to add BSPs to the list.

Creating the Projects

When you have specified your BSP, you click Finish to create the projects. The SBT
copies required source files to your project directories, and creates makefiles and
other generated files. Finally, the SBT executes a make clean command on your BSP.

For details about what happens when Nios II projects are created, refer to “Nios II
Software Projects” in the Nios II Software Build Tools chapter of the Nios II Software
Developer’s Handbook. For details about the make clean command, refer to “Makefiles”
in the same chapter.

Navigating the Project

When you have created a Nios II project, it appears in the Project Explorer view,
which is typically displayed at the left side of the Nios II perspective. You can expand
each project to examine its folders and files.

For an explanation of the folders and files in a Nios II BSP, refer to “Nios II Software
Projects” in the Nios II Software Build Tools chapter of the Nios II Software Developer’s
Handbook.

Nios Il Software Developer’s Handbook January 2014 Altera Corporation

http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf

Chapter 2: Getting Started with the Graphical User Interface 2-5
Getting Started with Nios Il Software in Eclipse

Building the Project

To build a Nios II project in the Nios II SBT for Eclipse, right-click the project name
and click Build Project. A progress bar shows you the build status. The build process
can take a minute or two for a simple project, depending on the speed of the host
machine. Building a complex project takes longer.

During the build process, you view the build commands and command-line output in
the Eclipse Console view.
“ e For details about Nios I SBT commands and output, refer to the Nios II Software Build
Tools Reference chapter of the Nios II Software Developer’s Handbook.

When the build process is complete, the following message appears in the Console
view, under the C-Build [<project name>] title:

[<project name> build complete]

If the project has a dependency on another project, such as a BSP or a user library, the
SBT builds the dependency project first. This feature allows you to build an
application and its BSP with a single command.

Configuring the FPGA

Before you can run your software, you must ensure that the correct hardware design
is running on the FPGA. To configure the FPGA, you use the Quartus® II Programmer.

In the Windows operating system, you start the Quartus II Programmer from the
Nios II SBT for Eclipse, through the Nios Il menu. In the Linux operating system, you
start Quartus II Programmer from the Quartus II software.

The project directory for your hardware design contains an SRAM Object File (.sof)
along with the .sopcinfo file. The .sof file contains the hardware design to be
programmed in the FPGA.
“ e For details about programming an FPGA with Quartus I Programmer, refer to the
Quartus II Programmer chapter in Volume 3: Verification of the Quartus II Handbook.

Running the Project on Nios Il Hardware
This section describes how to run a Nios II program using the Nios II SBT for Eclipse
on Nios II hardware, such as an Altera development board.
I'=" If your project was created with version 10.1 or earlier of the Nios I SBT, you must

re-import it to create the Nios II launch configuration correctly.

“ e ANios Il instruction set simulator is available through the Lauterbach GmbH website

(www.lauterbach.com).

January 2014 Altera Corporation Nios Il Software Developer’s Handbook

http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf
http://www.altera.com/literature/hb/qts/qts_qii53022.pdf
www.lauterbach.com

2-6

Chapter 2: Getting Started with the Graphical User Interface
Getting Started with Nios Il Software in Eclipse

To run a software project, right-click the application project name, point to Run As,
and click Nios II Hardware. This command carries out the following actions:

m Creates a Nios Il run configuration. For details about run configurations, refer to
“Run Configurations in the SBT for Eclipse” on page 2-20.

m Builds the project executable. If all target files are up to date, nothing is built.

m Establishes communications with the target, and verifies that the FPGA is
configured with the correct hardware design.

m Downloads the Executable and Linking Format File (.elf) to the target memory
m Starts execution at the .elf entry point.

Program output appears in the Nios II Console view. The Nios II Console view
maintains a terminal I/O connection with a communication device connected to the
Nios II processor in the hardware system, such as a JTAG UART. When the Nios II
program writes to stdout or stderr, the Nios II Console view displays the text. The
Nios II Console view can also accept character input from the host keyboard, which is
sent to the processor and read as stdin.

To disconnect the terminal from the target, click the Terminate icon in the Nios II
Console view. Terminating only disconnects the host from the target. The target
processor continues executing the program.

Debugging the Project on Nios Il Hardware

This section describes how to debug a Nios II program using the Nios II SBT for
Eclipse on Nios II hardware, such as an Altera development board.

If your project was created with version 10.1 or earlier of the Nios II SBT, you must
re-import it to create the Nios II launch configuration correctly.

To debug a software project, right-click the application project name, point to Debug
As, and click Nios IT Hardware. This command carries out the following actions:

m Creates a Nios II run configuration. For details about run configurations, refer to
“Run Configurations in the SBT for Eclipse” on page 2-20.

m Builds the project executable. If all target files are up to date, nothing is built.

m If debugging on hardware, establishes communications with the target, and
verifies that the FPGA is configured with the correct hardware design.

m Downloads the .elf to the target memory.
m Sets a breakpoint at the top of main ().
m Starts execution at the .elf entry point.

The Eclipse debugger with the Nios II plugins provides a Nios II perspective,
allowing you to perform many common debugging tasks. Debugging a Nios II
program with the Nios II plugins is generally the same as debugging any other
C/C++ program with Eclipse and the CDT plugins.

For information about debugging with Eclipse and the CDT plugins, refer to the
Eclipse help system.

Nios Il Software Developer’s Handbook January 2014 Altera Corporation

Chapter 2: Getting Started with the Graphical User Interface 2-7
Getting Started with Nios Il Software in Eclipse

The debugging tasks you can perform with the Nios II SBT for Eclipse include the
following tasks:

Controlling program execution with commands such as:
m Suspend (pause)

m Resume

m Terminate

m Step Into

m Step Over

m Step Return

Setting breakpoints and watchpoints

Viewing disassembly

Instruction stepping mode

Displaying and changing the values of local and global variables in the following
formats:

m Binary

m Decimal

m Hexadecimal

Displaying watch expressions

Viewing and editing registers in the following formats:
m Binary

m Decimal

m Hexadecimal

Viewing and editing memory in the following formats:
m Hexadecimal

m ASCII

m Signed integer

m Unsigned integer

Viewing stack frames in the Debug view

Just as when running a program, Eclipse displays program output in the Console
view of Eclipse. The Console view maintains a terminal I/O connection with a
communication device connected to the Nios II processor in the hardware system,
such as a JTAG UART. When the Nios II program writes to stdout or stderr, the
Console view displays the text. The Console view can also accept character input from
the host keyboard, which is sent to the processor and read as stdin.

To disconnect the terminal from the target, click the Terminate icon in the Console
view. Terminating only disconnects the host from the target. The target processor
continues executing the program.

January 2014 Altera Corporation Nios Il Software Developer’s Handbook

2-8

Chapter 2: Getting Started with the Graphical User Interface
Getting Started with Nios Il Software in Eclipse

If your project was created with version 10.1 or earlier of the Nios II SBT, you must
re-import it to create the Nios II launch configuration correctly.

Using the Altera Bytestream Console

The Altera bytestream console enables you to see output from the processor’s stdout
and stderr devices, and send input to its stdin device. The function of the Altera
bytestream console is similar to the nios2-terminal command-line utility.

Open the Altera bytestream console in the Eclipse Console view the same way as any
other Eclipse console, by clicking the Open Console button.

When you open the Altera bytestream console, the Bytestream Console Selection
dialog box shows you a list of available bytestreams. This is the same set of
bytestreams recognized by System Console. Select the bytestream connected to the
processor you are debugging.

For information about how System Console recognizes bytestreams, refer to the
Analyzing and Debugging Designs with the System Console chapter in Volume 3:
Verification of the Quartus II Handbook.

You can send characters to the processor’s stdin device by typing in the bytestream
console. Be aware that console input in buffered on a line-by-line basis. Therefore, the
processor does not receive any characters until you press the Enter key.

A bytestream device can support only one connection at a time. You must close the
Altera bytestream console before attempting to connect to the processor with the
nios2-terminal utility, and vice versa.

Creating a Simple BSP

You create a BSP with default settings using the Nios II Board Support Package
wizard. To start the wizard, on the File menu, point to New and click Nios II Board
Support Package.

The Nios II Board Support Package wizard enables you to specify the following BSP
parameters:

m The name
®m The underlying hardware design

m The location

Nios Il Software Developer’s Handbook January 2014 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii53028.pdf

Chapter 2: Getting Started with the Graphical User Interface 2-9
Makefiles and the Nios Il SBT for Eclipse

m The operating system and version

I'=" You can select the operating system only at the time you create the BSP. To
change operating systems, you must create a new BSP.

m Additional arguments to the nios2-bsp script

If you intend to run the project in the Nios Il ModelSim® simulation environment,
use the Additional arguments parameter to specify the location of the testbench
Simulation Package Descriptor File (.spd). The .spd file is located in the Quartus II
project directory. Specify the path as follows:

--set QUARTUS_PROJECT DIR=<relative path>

Altera recommends that you use a relative path name, to ensure that the location

of your project is independent of the installation directory.

“ e For details about nios2-bsp command arguments, refer to “Details of BSP
Creation” in the Nios II Software Build Tools chapter of the Nios II Software
Developer’s Handbook.

After you have created the BSP, you have the following options for GUI-based BSP
editing:

m To access and modify basic BSP properties, right-click the BSP project, point to
Properties and click Nios II BSP Properties.

m To modify parameters and settings in detail, use the Nios II BSP Editor, described
in “Using the BSP Editor”.

Makefiles and the Nios Il SBT for Eclipse

The Nios II SBT for Eclipse creates and manages the makefiles for Nios II software
projects. When you create a project, the Nios II SBT creates a makefile based on the
source content you specify and the parameters and settings you select. When you
modify the project in Eclipse, the Nios II SBT updates the makefile to match.

Details of how each makefile is created and maintained vary depending on the project
type, and on project options that you control. The authoritative specification of project
contents is always the makefile, regardless how it is created or updated.

By default, the Nios II SBT manages the list of source files in your makefile, based on
actions you take in Eclipse. However, in the case of applications and libraries, you
have the option to manage sources manually. Both styles of source management are
discussed in the following sections.

Eclipse Source Management

Nios II application and user library makefiles are based on source files and properties
that you specify directly. Eclipse source management allows you to add and remove
source files with standard Eclipse actions, such as dragging a source file into and out
of the Project Explorer view and adding a new source file through the File menu.

January 2014 Altera Corporation Nios Il Software Developer’s Handbook

http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf

2-10

Chapter 2: Getting Started with the Graphical User Interface
Makefiles and the Nios Il SBT for Eclipse

You can examine and modify many makefile properties in the Nios II Application
Properties or Nios II Library Properties dialog box. To open the dialog box,
right-click the project, click Properties, and click Nios IT Application Properties or
Nios II Library Properties.

Table 2-1 lists GUI actions that make changes to an application or user library
makefile under Eclipse source management.

Table 2-1. Modifying a Makefile with Eclipse Source Management

Modification Where Modified

Specifying the application or user library name

Nios Il Application Properties or Nios Il Library Properties dialog

box.
Adding or removing source files Refer to the Eclipse help system.
Specifying a path to an associated BSP Project References dialog box.
Specifying a path to an associated user library Project References dialog box.

Enabling, disabling or modifying compiler options

Nios Il Application Properties or Nios Il Library Properties dialog
box.

After the SBT has created a makefile, you can modify the makefile in the following
ways:

m With the Nios I SBT for Eclipse, as described in Table 2-1.
m With Nios II SBT commands from the Nios II Command Shell.

When modifying a makefile, the SBT preserves any previous nonconflicting
modifications, regardless how those modifications were made.

After you modify a makefile with the Nios II Command Shell, in Eclipse you must
right-click the project and click Update linked resource to keep the Eclipse project
view in step with the makefile.

When the Nios II SBT for Eclipse modifies a makefile, it locks the makefile to prevent
corruption by other processes. You cannot edit the makefile from the command line
until the SBT has removed the lock.

If you want to exclude a resource (a file or a folder) from the Nios II makefile
temporarily, without deleting it from the project, you can use the Remove from

Nios II Build command. Right-click the resource and click Remove from Nios II
Build. When a resource is excluded from the build, it does not appear in the makefile,
and Eclipse ignores it. However, it is still visible in the Project Explorer, with a
modified icon. To add the resource back into the build, right-click the resource and
click Add to Nios II Build.

Do not use the Eclipse Exclude from build command. With Nios II software projects,
you must use the Remove from Nios II Build and Add to Nios II Build commands
instead.

Absolute Source Paths and Linked Resources

By default, the source files for an Eclipse project are stored under the project directory.
If your project must incorporate source files outside the project directory, you can add
them as linked resources.

Nios Il Software Developer’s Handbook January 2014 Altera Corporation

Chapter 2: Getting Started with the Graphical User Interface 2-1
Makefiles and the Nios Il SBT for Eclipse

An Eclipse linked resource can be either a file or a folder. With a linked folder, all
source files in the folder and its subfolders are included in the build.

When you add a linked resource (file or folder) to your project, the SBT for Eclipse
adds the file or folder to your makefile with an absolute path name. You might use a
linked resource to refer to common source files in a fixed location. In this situation,
you can move the project to a different directory without disturbing the common
source file references.

A linked resource appears with a modified icon (green dot) in the Project Explorer, to
distinguish it from source files and folders that are part of the project. You can use the
Eclipse debugger to step into a linked source file, exactly as if it were part of the
project.

You can reconfigure your project to refer to any linked resource either as an individual
file, or through its parent folder. Right-click the linked resource and click Update
Linked Resource.

You can use the Remove from Nios II Build and Add to Nios II Build commands
with linked resources. When a linked resource is excluded from the build, its icon is
modified with a white dot.

You can use Eclipse to create a path variable, defining the location of a linked
resource. A path variable makes it easy to modify the location of one or more files in
your project.

For information about working with path variables and creating linked resources,
refer to the Eclipse help system.

User Source Management

You can remove a makefile from source management control through the Nios II
Application Properties or Nios II Library Properties dialog box. Simply turn off
Enable source management to convert the makefile to user source management.
When Enable source management is off, you must update your makefile manually to
add or remove source files to or from the project. The SBT for Eclipse makes no
changes to the list of source files, but continues to manage all other project parameters
and settings in the makefile.

Editing a makefile manually is an advanced technique. Altera recommends that you
avoid manual editing. The SBT provides extensive capabilities for manipulating
makefiles while ensuring makefile correctness.

In a makefile with user-managed sources, you can refer to source files with an
absolute path. You might use an absolute path to refer to common source files in a
fixed location. In this situation, you can move the project to a different directory
without disturbing the common source file references.

Projects with user-managed sources do not support the following features:
m Linked resources
m The Add to Nios II Build command

m The Remove from Nios II Build command

January 2014 Altera Corporation Nios Il Software Developer’s Handbook

2-12 Chapter 2: Getting Started with the Graphical User Interface
Using the BSP Editor

Table 2-2 lists GUI actions that make changes to an application or user library
makefile under user source management.

Table 2-2. Modifying a Makefile with User Source Management

Modification Where Modified
Specifying the application or user library name El(i)t))(s Il Application Properties or Nios Il Library Properties dialog
Specifying a path to an associated BSP Project References dialog box
Specifying a path to an associated user library Project References dialog box
Enabling, disabling or modifying compiler options Li(i)())(s Il Application Properties or Nios Il Library Properties dialog

I['=~ With user source management, the source files shown in the Eclipse Project Explorer
view do not necessarily reflect the sources built by the makefile. To update the Project
Explorer view to match the makefile, right-click the project and click Sync from
Nios II Build.

BSP Source Management

Nios II BSP makefiles are handled differently from application and user library
makefiles. BSP makefiles are based on the operating system, BSP settings, selected
software packages, and selected drivers. You do not specify BSP source files directly.

BSP makefiles must be managed by the SBT, either through the BSP Editor or through

the SBT command-line utilities.

“ e For further details about specifying BSPs, refer to “Using the BSP Editor”.

Using the BSP Editor

Typically, you create a BSP with the Nios II SBT for Eclipse. The Nios II plugins
provide the basic tools and settings for defining your BSP. For more advanced BSP
editing, use the Nios II BSP Editor. The BSP Editor provides all the tools you need to
create even the most complex BSPs.

Tcl Scripting and the Nios Il BSP Editor

The Nios II BSP Editor provides support for Tcl scripting. When you create a BSP in
the BSP Editor, the editor can run a Tcl script that you specify to supply BSP settings.

You can also export a Tcl script from the BSP Editor, containing all the settings in an
existing BSP. By studying such a script, you can learn about how BSP Tcl scripts are
constructed.

Nios Il Software Developer’s Handbook January 2014 Altera Corporation

Chapter 2: Getting Started with the Graphical User Interface 2-13
Using the BSP Editor

Starting the Nios Il BSP Editor

You start the Nios II BSP Editor in one of the following ways:

m Right-click an existing project, point to Nios II, and click BSP Editor. The editor
loads the BSP Settings File (.bsp) associated with your project, and is ready to
update it.

® On the Nios Il menu, click Nios II BSP Editor. The editor starts without loading
a .bsp file.

m Right-click an existing BSP project and click Properties. In the Properties dialog
box, select Nios II BSP Properties, and click BSP Editor. The editor loads
your .bsp file for update.

The Nios Il BSP Editor Screen Layout

The Nios II BSP Editor screen is divided into two areas. The top area is the command
area, and the bottom is the console area. The details of the Nios II BSP Editor screen
areas are described in this section.

Below the console area is the Generate button. This button is enabled when the BSP
settings are valid. It generates the BSP target files, as shown in the Target BSP
Directory tab.

The Command Area

In the command area, you specify settings and other parameters defining the BSP. The
command area contains several tabs:

m The Main tab

m The Software Packages tab

m The Drivers tab

® The Linker Script tab

m The Enable File Generation tab
m The Target BSP Directory tab

Each tab allows you to view and edit a particular aspect of the .bsp, along with
relevant command line parameters and Tcl scripts.

The settings that appear on the Main, Software Packages and Drivers tabs are the
same as the settings you manipulate on the command line.
“ e For detailed descriptions of settings defined for Altera-provided operating systems,
software packages, and drivers, refer to the Nios II Software Build Tools Reference
chapter of the Nios II Software Developer’s Handbook.

January 2014 Altera Corporation Nios Il Software Developer’s Handbook

http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf

2-14 Chapter 2: Getting Started with the Graphical User Interface
Using the BSP Editor

The Main Tab

The Main tab presents general settings and parameters, and operating system
settings, for the BSP. The BSP includes the following settings and parameters:

m The path to the .sopcinfo file specifying the target hardware
m The processor name

m The operating system and version

I"=" You cannot change the operating system in an existing BSP. You must create
a new BSP based on the desired operating system.

m The BSP target directory—the destination for files that the SBT copies and creates
for your BSP.

m BSP settings

BSP settings appear in a tree structure. Settings are organized into Common and
Advanced categories. Settings are further organized into functional groups. The
available settings depend on the operating system.

When you select a group of settings, the controls for those settings appear in the pane
to the right of the tree. When you select a single setting, the pane shows the setting
control, the full setting name, and the setting description.

Software package and driver settings are presented separately, as described in “The
Software Packages Tab” and “The Drivers Tab”.

The Software Packages Tab

The Software Packages tab allows you to insert and remove software packages in
your BSP, and control software package settings.

At the top of the Software Packages tab is the software package table, listing each
available software package. The table allows you to select the software package
version, and enable or disable the software package.

The operating system determines which software packages are available.

Many software packages define settings that you can control in your BSP. When you
enable a software package, the available settings appear in a tree structure, organized
into Common and Advanced settings.

When you select a group of settings, the controls for those settings appear in the pane
to the right of the tree. When you select a single setting, the pane shows the setting
control, the full setting name, and the setting description.

Enabling and disabling software packages and editing software package settings can
have a profound impact on BSP behavior. Refer to the documentation for the specific
software package for details.

“ e For the read-only zip file system, refer to the Read-Only Zip File System chapter of the
Nios II Software Developer’s Handbook. For the NicheStack TCP/IP Stack - Nios II
Edition, refer to the Ethernet and the NicheStack TCP/IP Stack - Nios 1 Edition chapter of
the Nios II Software Developer’s Handbook.

Nios Il Software Developer’s Handbook January 2014 Altera Corporation

http://www.altera.com/literature/hb/nios2/n2sw_nii52012.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52013.pdf

Chapter 2: Getting Started with the Graphical User Interface 2-15
Using the BSP Editor

I

&

ri'/'""

General settings, operating system settings, and driver settings are presented
separately, as described in “The Main Tab” and “The Drivers Tab”.

The Drivers Tah

The Drivers tab allows you to select, enable, and disable drivers for devices in your
system, and control driver settings.

At the top of the Drivers tab is the driver table, mapping components in the hardware
system to drivers. The driver table shows components with driver support. Each
component has a module name, module version, module class name, driver name,
and driver version, determined by the contents of the hardware system. The table
allows you to select the driver by name and version, as well as to enable or disable
each driver.

When you select a driver version, all instances of that driver in the BSP are set to the
version you select. Only one version of a given driver can be used in an individual
BSP.

Many drivers define settings that you can control in your BSP. Available driver
settings appear in a tree structure below the driver table, organized into Common and
Advanced settings.

When you select a group of settings, the controls for those settings appear in the pane
to the right of the tree. When you select a single setting, the pane shows the setting
control, the full setting name, and the setting description.

Enabling and disabling device drivers, changing drivers and driver versions, and
editing driver settings, can have a profound impact on BSP behavior. Refer to the
relevant component documentation and driver information for details. For Altera
components, refer to the Embedded Peripherals IP User Guide.

General settings, operating system settings, and software package settings are
presented separately, as described in “The Main Tab” and “The Software Packages
Tab”.

The Linker Script Tab

The Linker Script tab allows you to view available memory in your hardware system,
and examine and modify the arrangement and usage of linker regions in memory.

When you make a change to the memory configuration, the SBT validates your
change. If there is a problem, a message appears in the Problems tab in the console
area, as described in “The Problems Tab” on page 2-18.

Rearranging linker regions and linker section mappings can have a very significant
impact on BSP behavior.

January 2014 Altera Corporation Nios Il Software Developer’s Handbook

http://www.altera.com/literature/ug/ug_embedded_ip.pdf

2-16

Chapter 2: Getting Started with the Graphical User Interface
Using the BSP Editor

Linker Section Mappings

At the top of the Linker Script tab, the Linker Section Mappings table shows the
mapping from linker sections to linker regions. You can edit the BSP linker section
mappings using the following buttons located next to the linker section table:

® Add—Adds a linker section mapping to an existing linker region. The Add button
opens the Add Section Mapping dialog box, where you specify a new section
name and an existing linker region.

® Remove—Removes a mapping from a linker section to a linker region.

m Restore Defaults—Restores the section mappings to the default configuration set
up at the time of BSP creation.

Linker Regions

At the bottom of the Linker Script tab, the Linker Memory Regions table shows all
defined linker regions. Each row of the table shows one linker region, with its address
range, memory device name, size, and offset into the selected memory device.

You reassign a defined linker region to a different memory device by selecting a
different device name in the Memory Device Name column. The Size and Offset
columns are editable. You can also edit the list of linker regions using the following
buttons located next to the linker region table:

B Add—Adds a linker region in unused space on any existing device. The Add
button opens the Add Memory Region dialog box, where you specify the memory
device, the new memory region name, the region size, and the region’s offset from
the device base address.

m Remove—Removes a linker region definition. Removing a region frees the
region’s memory space to be used for other regions.

m Add Memory Device—Creates a linker region representing a memory device that
is outside the hardware system. The button launches the Add Memory Device
dialog box, where you can specify the device name, memory size and base
address. After you add the device, it appears in the linker region table, the
Memory Device Usage Table dialog box, and the Memory Map dialog box.

This functionality is equivalent to the add_memory_device Tcl command.

"=~ Ensure that you specify the correct base address and memory size. If the
base address or size of an external memory changes, you must edit the BSP
manually to match. The SBT does not automatically detect changes in
external memory devices, even if you update the BSP by creating a new
settings file.

“ e For information about add_memory device and other SBT Tcl commands,

refer to “Software Build Tools Tcl Commands” in the Nios II Software Build
Tools Reference chapter of the Nios II Software Developer’s Handbook.

m Restore Defaults—restores the memory regions to the default configuration set up
at the time of BSP creation.

Nios Il Software Developer’s Handbook January 2014 Altera Corporation

http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf

Chapter 2: Getting Started with the Graphical User Interface 2-17

Using the BSP Editor

m Memory Usage—Opens the Memory Device Usage Table. The Memory Device
Usage Table allows you to view memory device usage by defined memory region.
As memory regions are added, removed, and adjusted, each device’s free memory,
used memory, and percentage of available memory are updated. The rightmost
column is a graphical representation of the device’s usage, according to the
memory regions assigned to it.

m Memory Map—Opens the Memory Map dialog box. The memory map allows
you to view a map of system memory in the processor address space. The Device
table is a read-only reference showing memories in the hardware system that are
mastered by the selected processor. Devices are listed in memory address order.

To the right of the Device table is a graphical representation of the processor’s
memory space, showing the locations of devices in the table. Gaps indicate
unmapped address space.

This representation is not to scale.

Enable File Generation Tab

The Enable File Generation tab allows you to take ownership of specific BSP files that
are normally generated by the SBT. When you take ownership of a BSP file, you can
modify it, and prevent the SBT from overwriting your modifications. The Enable File
Generation tab shows a tree view of all target files to be generated or copied when the
BSP is generated. To disable generation of a specific file, expand the software
component containing the file, expand any internal directory folders, select the file,
and right-click. Each disabled file appears in a list at the bottom of the tab.

This functionality is equivalent to the set_ignore_file Tcl command.

If you take ownership of a BSP file, the SBT can no longer update it to reflect future
changes in the underlying hardware. If you change the hardware, be sure to update
the file manually.

For information about set_ignore file and other SBT Tcl commands, refer to
“Software Build Tools Tcl Commands” in the Nios II Software Build Tools Reference
chapter of the Nios II Software Developer’s Handbook.

Target BSP Directory Tab

The Target BSP Directory tab is a read-only reference showing you what output to
expect when the BSP is generated. It does not depict the actual file system, but rather
the files and directories to be created or copied when the BSP is generated. Each
software component, including the operating system, drivers, and software packages,
specifies source code to be copied into the BSP target directory. The files are generated
in the directory specified on the Main tab.

When you generate the BSP, existing BSP files are overwritten, unless you disable
generation of the file in the Enable File Generation tab.

January 2014 Altera Corporation Nios Il Software Developer’s Handbook

http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf

2-18

Chapter 2: Getting Started with the Graphical User Interface
Using the BSP Editor

The Console Area

The console area shows results of settings and commands that you select in the
command area. The console area consists of the following tabs:

m The Information tab
m The Problems tab
m The Processing tab

The following sections describe each tab.

The Information Tab

The Information tab shows a running list of high-level changes you make to your
BSP, such as adding a software package or changing a setting value.

The Problems Tah

The Problems tab shows warnings and errors that impact or prohibit BSP creation.
For example, if you inadvertently specify an invalid linker section mapping, a
message appears in the Problems tab.

The Processing Tah

When you generate your BSP, the Processing tab shows files and folders created and
copied in the BSP target directory.

Exporting a Tel Script

When you have configured your BSP to your satisfaction, you can export the BSP
settings as a Tcl script. This feature allows you to perform the following tasks:

m Regenerate the BSP from the command line

m Recreate the BSP as a starting point for a new BSP

m Recreate the BSP on a different hardware platform

m Examine the Tcl script to improve your understanding of Tcl command usage

The exported Tcl script captures all BSP settings that you have changed since the
previous time the BSP settings file was saved. If you export a Tcl script after creating a
new BSP, the script captures all nondefault settings in the BSP. If you export a Tcl
script after editing a pre-existing BSP, the script captures your changes from the
current editing session.

To export a Tcl script, in the Tools menu, click Export Tcl Script, and specify a
filename and destination path. The file extension is .tcl.

You can later run your exported script as a part of creating a new BSP.

To run a Tcl script during BSP creation, refer to “Using a Tcl Script in BSP Creation”.
For details about default BSP settings, refer to “Tcl Scripts for BSP Settings” in the
Nios II Software Build Tools chapter of the Nios II Software Developer’s Handbook.For
information about recreating and regenerating BSPs, refer to “Revising Your BSP” in
the Nios II Software Build Tools chapter of the Nios II Software Developer’s Handbook.

Nios Il Software Developer’s Handbook January 2014 Altera Corporation

http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf

Chapter 2: Getting Started with the Graphical User Interface 2-19
Using the BSP Editor

Creating a New BSP

To create a BSP in the Nios II BSP Editor, use the New BSP command in the File menu
to open the New BSP dialog box. This dialog box controls the creation of a new BSP
settings file. The BSP Editor loads this new BSP after the file is created.

In this dialog box, you specify the following parameters:
m The .sopcinfo file defining the hardware platform.
m The CPU name of the targeted processor.
m The BSP type and version.
"=~ You can select the operating system only at the time you create the BSP. To
change operating systems, you must create a new BSP.
m The operating system version.
m The name of the BSP settings file. It is created with file extension .bsp.

m Absolute or relative path names in the BSP settings file. By default, relative paths
are enabled for filenames in the BSP settings file.

m An optional Tcl script that you can run to supply additional settings.

Normally, you specify the path to your .sopcinfo file relative to the BSP directory. This
enables you to move, copy and archive the hardware and software files together. If
you browse to the .sopcinfo file, or specify an absolute path, the Nios II BSP Editor
offers to convert your path to the relative form.

Using a Tcl Script in BSP Creation

When you create a BSP, the New BSP Settings File dialog box allows you to specify
the path and filename of a Tcl script. The Nios II BSP Editor runs this script after all
other BSP creation steps are done, to modify BSP settings. This feature allows you to
perform the following tasks:

m Recreate an existing BSP as a starting point for a new BSP
m Recreate a BSP on a different hardware platform
®m Include custom settings common to a group of BSPs

The Tcl script can be created by hand, or exported from another BSP.
“ e “Exportinga Tcl Script” describes how to create a Tcl script from an existing BSP. Refer
to “Tcl Scripts for BSP Settings” in the Nios II Software Build Tools chapter of the Nios II
Software Developer’s Handbook.

BSP Validation Errors

If you modify a hardware system after basing a BSP on it, some BSP settings might no
longer be valid. This is a very common cause of BSP validation errors. Eliminating
these errors usually requires correcting a large number of interrelated settings.

If your modifications to the underlying hardware design result in BSP validation
errors, the best practice is to update or recreate the BSP. Updating and recreating BSPs
is very easy with the BSP Editor.

January 2014 Altera Corporation Nios Il Software Developer’s Handbook

http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf

2-20

Chapter 2: Getting Started with the Graphical User Interface
Run Configurations in the SBT for Eclipse

For complete information about updating and recreating BSPs, refer to “Revising
Your BSP” in the Nios II Software Build Tools chapter of the Nios II Software Developer’s
Handbook.

If you recreate your BSP, you might find it helpful to capture your old BSP settings by
exporting them to a Tcl script. You can edit the Tcl script to remove any settings that
are incompatible with the new hardware design.

For details about exporting and using Tcl scripts, refer to “Exporting a Tcl Script” and
“Using a Tcl Script in BSP Creation”. For a detailed discussion of updating BSPs for
modified hardware systems, refer to “Revising Your BSP” in the Nios II Software Build
Tools chapter of the Nios II Software Developer’s Handbook.

Configuring Component Search Paths

By default, the SBT discovers system components using the same search algorithm as
SOPC Builder or Qsys. You can define additional search paths to be used for locating
components.

You define additional search paths through the Edit Custom Search Paths dialog box.
In the Tools menu, click Options, select BSP Component Search Paths, and click
Custom Component Search Paths. You can specify multiple search paths. Each path
can be recursive.

Run Configurations in the SBT for Eclipse

Eclipse uses run configurations to control how it runs and debugs programs. Run
configurations in the Nios II SBT for Eclipse have several features that help you debug
Nios II software running on FPGA platforms.

You can open the run configuration dialog box two ways:
®m You can right-click an application, point to Run As, and click Run Configurations.

B You can right-click an application, point to Debug As, and click Debug
Configurations.

Depending on which way you opened the run configuration dialog box, the title is
either Run Configuration or Debug Configuration. However, both views show the
same run configurations.

If your project was created with version 10.1 or earlier of the Nios II SBT, you must
re-import it to create the Nios II launch configuration correctly.

Each run configuration is presented on several tabs. This section describes each tab.

Nios Il Software Developer’s Handbook January 2014 Altera Corporation

http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf

Chapter 2: Getting Started with the Graphical User Interface 2-21
Nios Il Hardware v2 (beta)

The Project Tab

On this tab, you specify the application project to run. The Advanced button opens
the Nios II ELF Section Properties dialog box. In this dialog box, you can control the
runtime parameters in the following ways:

m Specify the processor on which to execute the program (if the hardware design
provides multiple processors)

m Specify the device to use for standard I/O

m Specify the expected location, timestamp and value of the system ID

m Specify the path to the Quartus II JTAG Debugging Information File (.jdi)
m Enable or disable profiling

The Nios II SBT for Eclipse sets these parameters to reasonable defaults. Do not
modify them unless you have a clear understanding of their effects.

The Target Connection Tah

This tab allows you to control the connection between the host machine and the target
hardware in the following ways:

m Select the cable, if more than one cable is available

m Allow software to run despite a system ID value or timestamp that differs from the
hardware

m Reset the processor when the software is downloaded

The System ID Properties button allows you to examine the system ID and
timestamp in both the .elf file and the hardware. This can be helpful when you need
to analyze the cause of a system ID or timestamp mismatch.

The Debugger Tah

In this tab, you optionally enable the debugger to halt at a specified entry point.

Nios Il Hardware v2 (beta)

Starting with version 13.1, run configurations and debug configurations have a
launch type called Nios II Hardware v2 (beta). To create this launch type, in the Run
menu select either Run Configurations or Debug Configurations. In the Run/Debug
Configurations dialog box, select Nios II Hardware v2 (beta) and click the New
button to create a new launch configuration.

Nios II Hardware v2(beta) has options below.

The Main Tah

This tab allows you to select the following options:

January 2014 Altera Corporation Nios Il Software Developer’s Handbook

2-22 Chapter 2: Getting Started with the Graphical User Interface
Optimizing Project Build Time

m Specify the application project to run and the ELF File location
m Specify the processor and the JTAG UART connection to use
m Enable or disable system ID and timestamp checks

m Enable or disable processor controls such as download ELF, reset processor or start
processor

The Debugger Tah

In this tab, you optionally enable the debugger to halt at a specified entry point.

Multi-Core Launches

If you have multiple run configurations, create an Eclipse launch group. Launch
groups are an Eclipse feature that allows multiple run configurations to be started at
the same time. You choose which run configurations are added to the group. You can
use the launch group in any place where you can use a run configuration.

“ e TFor details about Eclipse launch groups, refer to the Eclipse help system.

Optimizing Project Build Time

When you build a Nios II project, the project makefile builds any components that are
unbuilt or out of date. For this reason, the first time you build a project is normally the
slowest. Subsequent builds are fast, only rebuilding sources that have changed.

To further optimize your project build time, disable generation of the objdump linker
map.

Nios II software build performance is generally better on Linux platforms than on
Windows platforms.

Importing a Command-Line Project

If you have software projects that were created with the Nios II SBT command line,
you can import the projects into the Nios II SBT for Eclipse for debugging and further
development. This section discusses the import process.

Your command-line C/C++ application, and its associated BSP, is created on the
command line. Any Nios II SBT command-line project is ready to import into the
Nios II SBT for Eclipse. No additional preparation is necessary.

The Nios I SBT for Eclipse imports the following kinds of Nios II command-line
projects:

m Command-line C/C++ application project
m Command-line BSP project
m Command-line user library project

You can edit, build, debug, and manage the settings of an imported project exactly the
same way you edit, build, debug, and manage the settings of a project created in
Nios II SBT for Eclipse.

Nios Il Software Developer’s Handbook January 2014 Altera Corporation

Chapter 2: Getting Started with the Graphical User Interface 2-23
Importing a Command-Line Project

The Nios I SBT for Eclipse imports each type of project through the Import wizard.
The Import wizard determines the kind of project you are importing, and configures
it appropriately.

You can continue to develop project code in your SBT project after importing the
project into Eclipse. You can edit source files and rebuild the project, using the SBT
either in Eclipse or on the command line.

For information about creating projects with the command line, refer to the Getting
Started from the Command Line chapter of the Nios II Software Developer’s Handbook.

Importing and debugging a project typically involves several of the following tasks.
You do not need to perform these tasks in this order, and you can repeat or omit some
tasks, depending on your needs.

m Import a command-line C/C++ application

m Import a supporting project

m Debug a command-line C/C++ application

m Edit command-line C/C++ application code

When importing a project, the SBT for Eclipse might make some minor changes to
your makefile. If the makefile refers to a source file located outside the project
directory tree, the SBT for Eclipse treats that file as a linked resource. However, it does
not add or remove any source files to or from your makefile.

When you import an application or user library project, the Nios II SBT for Eclipse
allows you to choose Eclipse source management or user source management. Unless
your project has an unusual directory structure, choose Eclipse source management,
to allow the SBT for Eclipse to automatically maintain your list of source files.

You debug and edit an imported project exactly the same way you debug and edit a
project created in Eclipse.

Import a Command-Line G/C++ Application

To import a command-line C/C++ application, perform the following steps:
1. Start the Nios II SBT for Eclipse.
2. On the File menu, click Import. The Import dialog box appears.

3. Expand the Nios II Software Build Tools Project folder, and select Import Nios II
Software Build Tools Project.

4. Click Next. The File Import wizard appears.

5. Click Browse and locate the directory containing the C/C++ application project to
import.

6. Click OK. The wizard fills in the project path.

January 2014 Altera Corporation Nios Il Software Developer’s Handbook

http://www.altera.com/literature/hb/nios2/n2sw_nii52014.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52014.pdf

2-24 Chapter 2: Getting Started with the Graphical User Interface
Importing a Command-Line Project

7. Specify the project name in the Project name box.

'~ Youmight see a warning saying “There is already a .project file at: <path>".
This warning indicates that the directory already contains an Eclipse
project. Either it is an Eclipse project, or it is a command-line project that is
already imported into Eclipse.

If the project is already in your workspace, do not re-import it.

8. Click Finish. The wizard imports the application project.

After you complete these steps, the Nios II SBT for Eclipse can build, debug, and run
the complete program, including the BSP and any libraries. The Nios II SBT for
Eclipse builds the project using the SBT makefiles in your imported C/C++
application project. Eclipse displays and steps through application source code
exactly as if the project were created in the Nios II SBT for Eclipse. However, Eclipse
does not have direct information about where BSP or user library code resides. If you
need to view, debug or step through BSP or user library source code, you need to
import the BSP or user library. The process of importing supporting projects, such as
BSPs and libraries, is described in “Import a Supporting Project”.

Importing a Project with Absolute Source Paths

If your project uses an absolute path to refer to a source file, the SBT for Eclipse
imports that source file as a linked resource. In this case, the import wizard provides a
page where you can manage how Eclipse refers to the source: as a file, or through a
parent directory.
“ e Forinformation about managing linked resources, refer to “Absolute Source Paths
and Linked Resources” on page 2-10.

Import a Supporting Project

While debugging a C/C++ application, you might need to view, debug or step
through source code in a supporting project, such as a BSP or user library. To make
supporting project source code visible in the Eclipse debug perspective, you need to
import the supporting project.

If you do not need BSP or user library source code visible in the debugger, you can
skip this task, and proceed to debug your project exactly as if you had created it in
Eclipse.

If you have several C/C++ applications based on one BSP or user library, import the

BSP or user library once, and then import each application that is based on the BSP or
user library. Each application’s makefile contains the information needed to find and
build any associated BSP or libraries.

The steps for importing a supporting project are exactly the same as those shown in
“Import a Command-Line C/C++ Application”.

Nios Il Software Developer’s Handbook January 2014 Altera Corporation

Chapter 2: Getting Started with the Graphical User Interface 2-25
Packaging a Library for Reuse

User-Managed Source Files

When you import a Nios II application or user library project, the Nios II SBT for
Eclipse offers the option of user source management. User source management is
helpful if you prefer to update your makefile manually to reflect source files added to
or removed from the project.

With user source management, Eclipse never makes any changes to the list of source
files in your makefile. However, the SBT for Eclipse manages all other project
parameters and settings, just as with any other Nios II software project.

If your makefile refers to a source file with an absolute path, when you import with
user source management, the absolute path is untouched, like any other source path.
You might use an absolute path to refer to common source files in a fixed location. In
this situation, you can move the project to a different directory without disturbing the
common source file references.

User source management is not available with BSP projects. BSP makefiles are based
on the operating system, BSP settings, selected software packages, and selected
drivers. You do not specify BSP source files directly.

“ =@ For details about how the SBT for Eclipse handles makefiles with user-managed

sources, refer to “User Source Management” on page 2-11.

Packaging a Library for Reuse

This section shows how to create and use a library archive file (.a) in the Nios II
Software Build Tools for Eclipse. This technique enables you to provide a library to
another engineer or organization without providing the C source files. This process
entails two tasks:

1. Create a Nios II user library

2. Create a Nios II application project based on the user library

Creating the User Library
To create a user library, perform the following steps:
1. In the File menu, point to New and click Nios II Library.
2. Type a project name, for example test_1ib.

3. For Location, browse to the directory containing your library source files (.c
and .h).

4. Click Finish.

5. Build the project to create the .a file (in this case libtest_lib.a)

January 2014 Altera Corporation Nios Il Software Developer’s Handbook

2-26 Chapter 2: Getting Started with the Graphical User Interface
Creating a Software Package

Using the Library
To use the library in a Nios II application project, perform the following steps:
1. Create your Nios Il application project as described in “Creating a Project” on
page 2-2.

2. To set the library path in the application project, right-click the project, and click
Properties.

3. Expand Nios II Application Properties. In Nios II Application Paths, next to
Application include directories, click Add and browse to the directory containing
your library header files.

4. Next to Application library directories, click Add and browse to the directory
containing your .a file.

5. Next to Library name, click Add and type the library project name you selected in
“Creating the User Library”.

6. Click OK.
7. Build your application.

As this example shows, the .c source files are not required to build the application
project. To hand off the library to another engineer or organization for reuse, you
provide the following files:

m Nios II library archive file (.a)

m Software header files (.h)

Creating a Software Package

This section shows how you can build a custom library into a BSP as a software
package. The software package can be linked to any BSP through the BSP Editor.

This section contains an example illustrating the steps necessary to include any
software package into a Nios II BSP.

To create and exercise the example software package, perform the following steps:

1. Locate the ip directory in your Altera Complete Design Suite installation. For
example, if the Altera Complete Design Suite version 11.0 is installed on the
Windows operating system, the directory might be c:\altera\11.0\ip. Under the
ip directory, create a directory for the software package. For simplicity, this section
refers to this directory as <example package>.

2. In <example package>, create a subdirectory named EXAMPLE_SW_PACKAGE. In
<example package>/EXAMPLE_SW_PACKAGE, create two subdirectories named
inc and lib.

3. In <example package>/EXAMPLE_SW_PACKAGE/inc, create a new header file
named example_sw_package.h. Insert the code shown in Example 2-1.

Example 2-1. Contents of example_sw_package.h

/* Example Software Package */

void example sw_package (void) ;

Nios Il Software Developer’s Handbook January 2014 Altera Corporation

Chapter 2: Getting Started with the Graphical User Interface 2-27
Creating a Software Package

4. In <example package>/EXAMPLE_SW_PACKAGE/lib, create a new C source file
named example_sw_package.c. Insert the code shown in Example 2-2.

Example 2-2. Contents of example_sw_package.c

/* Example Software Package */
#include <stdio.h>
#include "..\inc\example sw_package.h"

void example sw_package (void)

{
}

printf ("Example Software Package. \n");

5. In <example package>, create a new Tcl script file named
example_sw_package_sw.tcl. Insert the code shown in Example 2-3.

6. In the SBT for Eclipse, create a Nios II application and BSP project based on the
Hello World template. Set the application project name to
hello example sw_package.

January 2014 Altera Corporation Nios Il Software Developer’s Handbook

2-28

Chapter 2: Getting Started with the Graphical User Interface
Creating a Software Package

Example 2-3. Contents of example_sw_package_sw.tcl

#
example_sw_package_sw.tcl

#

Create a software package known as "example sw package"
create_sw _package example sw_package

The version of this software
set_sw_property version 11.0

Location in generated BSP that sources should be copied into
set_sw_property bsp subdirectory Example SW Package

#
Source file listings...
#

C/C++ source files
#add_sw property c_source EXAMPLE SW PACKAGE/src/my_ source.c

Include files
add_sw_property include_source
EXAMPLE SW_PACKAGE/inc/example sw_package.h

Lib files
add_sw_property lib source
EXAMPLE SW_PACKAGE/lib/libexample sw package library.a

Include paths for headers which define the APIs for this package
to share w/ app & bsp

Include paths are relative to the location of this software

package tcl file

add_sw_property include directory EXAMPLE SW_PACKAGE/inc

This driver supports HAL & UCOSII BSP (0S) types
add sw_property supported bsp type HAL
add_sw_property supported bsp type UCOSII

Add example software package system.h setting to the BSP:
add_sw_setting quoted string system h define \
example_ sw_package_system value EXAMPLE_SW_PACKAGE_SYSTEM_ VALUE 1 \
"Example software package system value"

End of file

Nios Il Software Developer’s Handbook January 2014 Altera Corporation

Chapter 2: Getting Started with the Graphical User Interface 2-29
Creating a Software Package

7. Create a new C file named hello_example_sw_package.c in the new application
project. Insert the code shown in Example 2-4.

Example 2-4. Contents of hello_example_sw_package.c

/*
* "Hello World" example.
*

* This example prints 'Hello from Nios II' to the STDOUT stream. It also
* tests inclusion of a user software package.

*/

#include <stdio.h>
#include "example_sw_package.h"

int main()

{
printf ("Hello from Nios II!\n");
example sw_package () ;
return 0;

}

8. Delete hello_world.c from the hello_example_sw_package application project.
9. In the File menu, point to New and click Nios II Library
10. Set the project name to example sw_package library.
11. For Location, browse to <example package>\EXAMPLE_SW_PACKAGE\lib
Il &" Building the library here is required, because the resulting .a is referenced
here by example_sw_package_sw.tcl.
12. Click Finish.

13. Build the example_sw_package_library project to create the
libexample_sw_package_library.a library archive file.

14. Right-click the BSP project, point to Nios II, and click BSP Editor to open the BSP
Editor.

15. In the Software Packages tab, find example_sw_package in the software package
table, and enable it.

If there are any errors in a software package's *_sw.tcl file, such as an incorrect
path that causes a file to not be found, the software package does not appear in the
BSP Editor.

16. Click the Generate button to regenerate the BSP. On the File menu, click Save to
save your changes to settings.bsp.

17. In the File menu, click Exit to exit the BSP Editor.
18. Build the hello_example_sw_package_bsp BSP project.
19. Build the hello_example_sw_package application project.

hello_example_sw_package.elf is ready to download and execute.

January 2014 Altera Corporation Nios Il Software Developer’s Handbook

2-30 Chapter 2: Getting Started with the Graphical User Interface
Programming Flash in Altera Embedded Systems

Programming Flash in Altera Embedded Systems

Many Nios II processor systems use external flash memory to store one or more of the
following items:

m Program code

m Program data

m FPGA configuration data
m File systems

The Nios II SBT for Eclipse provides flash programmer utilities to help you manage
and program the contents of flash memory. The flash programmer allows you to
program any combination of software, hardware, and binary data into flash memory
in one operation.

Starting the Flash Programmer
You start the flash programmer by clicking Flash Programmer in the Nios II menu.

When you first open the flash programmer, no controls are available until you open or
create a Flash Programmer Settings File (.flash-settings).

Creating a Flash Programmer Settings File

The .flash-settings file describes how you set up the flash programmer GUI to
program flash. This information includes the files to be programmed to flash,

a .sopcinfo file describing the hardware configuration, and the file programming
locations. You must create or open a flash programmer settings file before you can
program flash.

You create a flash programmer settings file through the File menu. When you click
New, the New Flash Programmer Settings File dialog box appears.

Specifying the Hardware Configuration

You specify the hardware configuration by opening a .sopcinfo file. You can locate
the .sopcinfo file in either of two ways:

m Browse to a BSP settings file. The flash programmer finds the .sopcinfo file
associated with the BSP.

m Browse directly to a .sopcinfo file.

Once you have identified a hardware configuration, details about the target hardware
appear at the top of the Nios II flash programmer screen.

Also at the top of the Nios II flash programmer screen is the Hardware Connections
button, which opens the Hardware Connections dialog box. This dialog box allows
you to select a download cable, and control system ID behavior, as described in “The
Target Connection Tab” on page 2-21.

Nios Il Software Developer’s Handbook January 2014 Altera Corporation

Chapter 2: Getting Started with the Graphical User Interface 2-31
Programming Flash in Altera Embedded Systems

The Flash Programmer Screen Layout

The flash programmer screen is divided into two areas. The top area is the command
area, and the bottom is the console area. The details of the flash programmer screen
areas are described in this section.

Below the console area is the Start button. This button is enabled when the flash
programmer parameters are valid. It starts the process of programming flash.

The Command Area

In the command area, you specify settings and other parameters defining the flash
programmer settings file. The command area contains one or more tabs. Each tab
represents a flash memory component available in the target hardware. Each tab
allows you to view the parameters of the memory component, and view and edit the
list of files to be programmed in the component.

The Add and Remove buttons allow you to create and edit the list of files to be
programmed in the flash memory component.

The File generation command box shows the commands used to generate the
Motorola S-record Files (.flash) used to program flash memory.

The File programming command box shows the commands used to program
the .flash files to flash memory.

The Properties button opens the Properties dialog box, which allows you to view and
modify information about an individual file. In the case of a .elf, the Properties button
provides access to the project reset address, the flash base and end addresses, and the
boot loader file (if any).

The flash programmer determines whether a boot loader is required based on the load
and run locations of the .text section. You can use the Properties dialog box to
override the default boot loader configuration.

The Console Area

The console area shows results of settings and commands that you select in the
command area. The console area consists of the following tabs:

m The Information tab
m The Problems tab
B The Processing tab

This section describes each tab.

The Information Tab

The Information tab shows the high-level changes you make to your flash
programmer settings file.

The Problems Tab

The Problems tab shows warnings and error messages about the process of flash
programmer settings file creation.

January 2014 Altera Corporation Nios Il Software Developer’s Handbook

2-32

Chapter 2: Getting Started with the Graphical User Interface
Creating Memory Initialization Files

The Processing Tab

When you program flash, the Processing tab shows the individual programming
actions as they take place.

Saving a Flash Programmer Settings File

When you have finished configuring the input files, locations, and other settings for
programming your project to flash, you can save the settings in a .flash-settings file.
With a .flash-settings file, you can program the project again without reconfiguring
the settings. You save a .flash-settings file through the File menu.

Flash Programmer Options

Through the Options menu, you can control several global aspects of flash
programmer behavior, as described in this section.

For details about these features, refer to the Nios II Flash Programmer User’s Guide.

Staging Directories

Through the Staging Directories dialog box, you control where the flash programmer
creates its script and .flash-settings files.

Generate Files

If you disable this option, the flash programmer does not generate programming files,
but programs files already present in the directory. You might use this feature to
reprogram a set of files that you have previously created.

Program Files

If you disable this option, the flash programmer generates the programming files and
the script, but does not program flash. You can use the files later to program flash by
turning off the Generate Files option.

Erase Flash Before Programming

When enabled, this option erases flash memory before programming.

Run From Reset After Programming

When enabled, this option resets and starts the Nios II processor after programming
flash.

Creating Memory Initialization Files

Sometimes it is useful to generate memory initialization files. For example, to
program your FPGA with a complete, running Nios II system, you must include the
memory contents in your .sof file. In this configuration, the processor can boot
directly from internal memory without downloading.

Nios Il Software Developer’s Handbook January 2014 Altera Corporation

http://www.altera.com/literature/ug/ug_nios2_flash_programmer.pdf

Chapter 2: Getting Started with the Graphical User Interface 2-33
Creating Memory Initialization Files

Creating a Hexadecimal (Intel-Format) File (.hex) is a necessary intermediate step in
creating such a .sof file. The Nios II SBT for Eclipse can create .hex files and other
memory initialization formats.

To generate correct memory initialization files, the Nios II SBT needs details about the
physical memory configuration and the types of files required. Typically, this
information is specified when the hardware system is generated.

['=" If your system contains a user-defined memory, you must specify these details
manually. For information, see “Memory Initialization Files for User-Defined
Memories”.

To generate memory initialization files, perform the following steps:
1. Right-click the application project.
2. Point to Make targets and click Build to open the Make Targets dialog box.

3. Select mem_init_generate.

4

. Click Build. The makefile generates a separate file (or files) for each memory
device. It also generates a Quartus II IP File (.qip). The .qip file tells the Quartus II
software where to find the initialization files.

5. Add the .qip file to your Quartus II project.
6. Recompile your Quartus II project.

If your hardware system was generated with SOPC Builder, you can alternatively use
the legacy method to generate memory initialization files. However, this method is
not preferred. To generate memory initialization files by the legacy method, perform
the following steps:

1. Right-click the application project.

2. Point to Make targets and click Build to open the Make Targets dialog box.
3. Select mem_init_install.
4

. Click Build. The makefile generates a separate file (or files) for each memory
device. The makefile inserts the memory initialization files directly in the
Quartus II project directory for you.

5. Recompile your Quartus II project.
“ e For more information about creating memory initialization files, refer to “Common
BSP Tasks” in the Nios II Software Build Tools chapter of the Nios II Software Developer’s
Handbook.

Memory Initialization Files for User-Defined Memories

Generating memory initialization files requires detailed information about the
physical memory devices, such as device names and data widths. Normally, the
Nios II SBT extracts this information from the .sopcinfo file. However, in the case of a
user-defined memory, the .sopcinfo file does not contain information about the data
memory, which is outside the system. Therefore, you must provide this information
manually.

January 2014 Altera Corporation Nios Il Software Developer’s Handbook

http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf

2-34

Chapter 2: Getting Started with the Graphical User Interface
Running a Nios Il System with ModelSim

You specify memory device information when you add the user-defined memory
device to your BSP. The device information persists in the BSP settings file, allowing
you to regenerate memory initialization files at any time, exactly as if the memory
device were part of the hardware system.

Specify the memory device information in the Advanced tab of the Add Memory
Device dialog box. Settings in this tab control makefile variables in mem_init.mk.

On the Advanced tab, you can control the following memory characteristics:
m The physical memory width.
m The device’s name in the hardware system.

m The memory initialization file parameter name. Every memory device can have an
HDL parameter specifying the name of the initialization file. The Nios II
ModelSim launch configuration overrides the HDL parameter to specify the
memory initialization filename. When available, this method is preferred for
setting the memory initialization filename.

"=~ For further information about this parameter, refer to “Embedded Software
Assignments” in the Publishing Component Information to Embedded Software
chapter of the Nios II Software Developer’s Handbook.

B The Mem init filename parameter can be used in Nios II systems as an alternative
method of specifying the memory initialization filename. The Mem init filename
parameter directly overrides any filename specified in the HDL.

m Connectivity to processor master ports. These parameters are used when creating
the linker script.

m The memory type: volatile, CFI flash or EPCS flash.
m Byte lanes.

You can also enable and disable generation of the following memory initialization file
types:
m .hexfile

m .datand .sym files

m .flash file

Running a Nios Il System with ModelSim

You can run a Nios II program on Nios II hardware, such as an Altera development
board, or you can run it in the Nios II ModelSim® simulation environment.

If your project was created with version 10.1 or earlier of the Nios II SBT, you must
re-import it to create the Nios II launch configuration correctly.

Nios Il Software Developer’s Handbook January 2014 Altera Corporation

http://www.altera.com/literature/hb/nios2/n2sw_nii52018.pdf

Chapter 2: Getting Started with the Graphical User Interface 2-35
Running a Nios Il System with ModelSim

Using ModelSim with an SOPC Builder-Generated System

If your hardware system was generated by SOPC Builder, running a software project
in ModelSim is very similar to running it on Nios Il hardware. Follow the instructions
in “Running the Project on Nios II Hardware” on page 2-5, except that when you
right-click the application project name, point to Run As, and click Nios II
ModelSim.

Similarly, to debug a software project in ModelSim, right-click the application project
name, point to Debug As, and click Nios II ModelSim.

Using ModelSim with a Qsys-Generated System

To run a Qsys-generated Nios II system with ModelSim, you must first create a
simulation model and testbench, and specify memory initialization files. You create
your Nios II simulation model and testbench using the steps that apply to any Qsys

design.
“ e Refer to “Qsys Design Flow” in the Creating a System with Qsys chapter in Volume 1 of
the Quartus II Handbook.

Creating the software projects is nearly the same as when you run the project on
hardware. To prepare your software for ModelSim simulation, perform the following
steps:

1. Create your software project, as described in “Creating a Project” on page 2-2.

Be sure to specify the Quartus II project path, as described in “Creating a Simple
BSP” on page 2-8.

If you need to initialize a user-defined memory, you must take special steps to
create memory initialization files correctly. These steps are described in “Memory
Initialization Files for User-Defined Memories” on page 2-33.

2. Build your software project, as described in “Building the Project” on page 2-5.
3. Create a ModelSim launch configuration with the following steps:

a. Right-click the application project name, point to Run As, and click Run
Configurations. In the Run Configurations dialog box, select Nios II
ModelSim, and click the New button.

b. In the Main tab, ensure that the correct software project name and .elf file are
selected.

c. Click Apply to save the launch configuration.
d. Click Close to close the dialog box.
I'=" If you are simulating multiple processors, create a launch configuration for

each processor, and create a launch group, as described in “Multi-Core
Launches” on page 2-22.

January 2014 Altera Corporation Nios Il Software Developer’s Handbook

http://www.altera.com/literature/hb/qts/qsys_intro.pdf

2-36

Chapter 2: Getting Started with the Graphical User Interface
Running a Nios Il System with ModelSim

=)

4. Open the run configuration you previously created. Click Run. The Nios II SBT for
Eclipse performs a make mem_init_generate command to create memory
initialization files, and launches ModelSim.

5. At the ModelSim command prompt, type 1d+.

When you create the launch configuration, you might see the following error
message:

SEVERE: The Quartus II project location has not been set in the ELF section. You
can manually override this setting in the launch configuration’s ELF file
‘Advanced’ properties page.

To correct this error, perform the following steps:
1. Click the Advanced button.

2. In the Quartus II project directory box, browse to locate the directory containing
your Quartus II project .spd file.

3. Click Close.
To avoid this error condition, specify the Quartus II project directory when you create

your application project, as described in “Creating a Simple BSP” on page 2-8.

Starting with version 13.1, run configurations has the launch type Nios Il Hardware
v2 (beta). To create this launch type, in the Run menu select Run Configurations. In
the Run Configurations dialog box, select Nios II Hardware v2 (beta) and click the
New button to create a new launch configuration. Nios Il Hardware v2 (beta) has the
following options:

m Specify the application project to run and the ELF file location

m Specify the SPD file location and Modelsim path
m Specify the SPD file

Nios Il GCC Tool chain upgrade from GCC 4.1.2 to GCC 4.7.3

In Nios II EDS version 13.1, the Nios® II GNU tool chain is upgraded from GCC 4.1.2
to GCC 4.7.3. When upgrading to the new tool chain you should note the following
changes.

Nios II specific changes:

Use __buildin_custom_* instead of -mcustom-* or #pragma to reliably generate Nios
IT Floating Point Custom Instructions (FPCI), independent of compiler optimization
level and command line flags.

To use -mcustom-* or #pragma for Nios II Floating Point Custom Instructions (FPCI):
the -ffinite-math-only flag must be used to generate fmins and fmax FPCI
the optimization (non -O0 flag) must be used to generate fsqrts FPCI

Users implementing transcendental functions in hardware must use the -funsafe-
math-optimizations flag to generate the FPCI for the transcendental functions fsins(),
fcoss(), ftans(), fatans(), fexps(), flogs() and corresponding double-precision functions

Nios Il Software Developer’s Handbook January 2014 Altera Corporation

Chapter 2: Getting Started with the Graphical User Interface 2-37

Eclipse Usage Notes

The Pragma format has changed from eg. #pragma custom_fadds 253 to #pragma
GCC target("custom-fadds=253") and function attributes provide an alternative
format __attribute__((target("custom-fadds=253"))).

Use the -mel/-meb flags instead of -EL/-EB for endian settings. Software Build Tool
for Eclipse (SBTE) users must regenerate the BSP for this setting to take effect.

The -mreverse-bitfields flag and reverse_bitfields pragma are no longer supported.
The -fstack-check flag must be used instead of -mstack-check to enable stack checking.
GCC changes and enhancements:

The -Wa,-relax-all flag in nios2-elf-gcc GCC 4.7.3 supports function calls and
programs exceeding the 256MB limit.

When used with optimization, inline assembly code with the asm operator needs to
declare values imported from C and exported back to C, using the mechanisms
described in "http:/ /gcc.gnu.org/onlinedocs/gec/Extended-Asm.html" \1
"Extended-Asm", http:/ /gcc.gnu.org/onlinedocs/gcc/Extended-
Asm.html#Extended-Asm.

Pre-standard C++ headers are not supported in GCC 4.7.3. Replace pre-standard C++
with standard C++ eg. #include <iostream.h>, cout, endl with #include <iostream>,
std::cout and std::endl respectively.

The compile flag -W1,--defsym foo=bar where bar is an undefined symbol, will
generate error at the linker level in GCC 4.7.3. GCC 4.1.2 does not include this check.

GNU also provides a porting guide to GCC4.7 to document common issues at
:http://gcc.gnu.org/gcc-4.7 /porting_to.html

Full GCC release notes are available at http://gcc.gnu.org/releases.html.

For general information about the GCC toolchains, refer to “Altera-Provided
Development Tools” in the Nios II Software Build Tools chapter in the Nios II Software
Developer’s Handbook. For information about selecting the toolchain on the command
line, refer to the Getting Started from the Command Line chapter of the Nios II Software
Developer’s Handbook. For detailed information about installing the Altera Complete
Design Suite, refer to the Altera Software Installation and Licensing Manual.

Eclipse Usage Notes

The behavior of certain Eclipse and CDT features is modified by the Nios II SBT for
Eclipse. If you attempt to use these features the same way you would with a
non-Nios II project, you might have problems configuring or building your project.
This section discusses such features.

Configuring Application and Library Properties

To configure project properties specific to Nios II SBT application and library projects,
use the Nios II Application Properties and Nios II Library Properties tabs of the
Properties dialog box. To open the appropriate properties tab, right-click the
application or library project and click Properties. Depending on the project type,
Nios II Application Properties or Nios II Library Properties tab appears in the list of
tabs. Click the appropriate Properties tab to open it.

January 2014 Altera Corporation Nios Il Software Developer’s Handbook

http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52014.pdf
http://www.altera.com/literature/manual/quartus_install.pdf

http://gcc.gnu.org/releases.html

http://gcc.gnu.org/gcc-4.7/porting_to.html

2-38

Chapter 2: Getting Started with the Graphical User Interface
Eclipse Usage Notes

The Nios II Application Properties and Nios II Library Properties tabs are nearly
identical. These tabs allow you to control the following project properties:

The name of the target .elf file (application project only)
The library name (library project only)

A list of symbols to be defined in the makefile

A list of symbols to be undefined in the makefile

A list of assembler flags

Warning level flags

A list of user flags

Generation of debug symbols

Compiler optimization level

Generation of object dump file (application project only)
Source file management

Path to associated BSP (required for application, optional for library)

Configuring BSP Properties

To configure BSP settings and properties, use the Nios II BSP Editor.

For detailed information about the BSP Editor, refer to “Using the BSP Editor” on
page 2-12.

Exclude from Build Not Supported

The Exclude from Build command is not supported. You must use the Remove from
Nios II Build and Add to Nios II Build commands instead.

This behavior differs from the behavior of the Nios II SBT for Eclipse in version 9.1.

Selecting the Correct Launch Configuration Type

If you try to debug a Nios II software project as a CDT Local C/C++ Application
launch configuration type, you see an error message, and the Nios II Debug
perspective fails to open. This is expected CDT behavior in the Eclipse platform. Local
C/C++ Application is the launch configuration type for a standard CDT project. To
invoke the Nios II plugins, you must use a Nios II launch configuration type.

[L= If your project was created with version 10.1 or earlier of the Nios II SBT, you must
re-import it to create the Nios II launch configuration correctly.

Target Connection Options

The Nios II launch configurations offer the following Nios II-specific options in the
Target Connection tab:

Disable ‘Nios II Console’ view

Ignore mismatched system ID

Nios Il Software Developer’s Handbook January 2014 Altera Corporation

Chapter 2: Getting Started with the Graphical User Interface 2-39
Eclipse Usage Notes

m Ignore mismatched system timestamp
m Download ELF to selected target system
m Start processor

B Reset the selected target system

Renaming Nios Il Projects
To rename a project in the Nios II SBT for Eclipse, perform the following steps:
1. Right-click the project and click Rename.
2. Type the new project name.
3. Right-click the project and click Refresh.

If you neglect to refresh the project, you might see the following error message when
you attempt to build it:

Resource <original project name> is out of sync with the system

Running Shell Scripts from the SBT for Eclipse

Many SBT utilities are implemented as shell scripts. You can use Eclipse external tools
configurations to run shell scripts. However, you must ensure that the shell
environment is set up correctly.

To run shell scripts from the SBT for Eclipse, execute the following steps:

1. Start the Nios II Command Shell, as described in the Getting Started from the
Command Line chapter of the Nios II Software Developer’s Handbook.

2. Start the Nios II SBT for Eclipse by typing the following command:
eclipse-nios2+

You must start the SBT for Eclipse from the command line in both the Linux and
Windows operating systems, to set up the correct shell environment.

3. From the Eclipse Run menu, point to External Tools, and click External Tools
Configurations.

4. Create a new tools configuration, or open an existing tools configuration.

January 2014 Altera Corporation Nios Il Software Developer’s Handbook

http://www.altera.com/literature/hb/nios2/n2sw_nii52014.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52014.pdf

2-40

Chapter 2: Getting Started with the Graphical User Interface
Eclipse Usage Notes

5. On the Main tab, set Location and Argument as shown in Table 2-3.

Table 2-3. Location and Argument to Run Shell Script from Eclipse
Platform | Location Argument
Windows | ${env_var:QUARTUS ROOTDIR}\bin\cygwin\bin\sh.exe -c "<script name> <script args>"
Linux ${env_var:SOPC_KIT NIOS2}/bin/<Script name> <Sscript args>
For example, to run the command elf2hex --help, set Location and Argument as
shown in Table 2—4.
Table 2-4. Location and Argument to Run elf2hex --help from Eclipse
Platform | Location Argument
Windows | ${env_var:QUARTUS ROOTDIR}\bin\cygwin\bin\sh.exe -c "elf2hex --help"
Linux ${env_var:SOPC_KIT NIOS2}/bin/elf2hex --help

6. On the Build tab, ensure that Build before launch and its related options are set
appropriately.

By default, a new tools configuration builds all projects in your workspace before
executing the command. This might not be the desired behavior.

7. Click Run. The command executes in the Nios II Command Shell, and the
command output appears in the Eclipse Console tab.

Must Use Nios Il Build Configuration

Although Eclipse can support multiple build configurations, you must use the Nios II
build configuration for Nios II projects.

L=~ 1If your project was created with version 10.1 or earlier of the Nios II SBT, you must
re-import it to create the Nios II launch configuration correctly.

CDT Limitations

The features listed in the left column of Table 2-5 are supported by the Eclipse CDT

plugins, but are not supported by Nios II plugins. The right column lists alternative
features supported by the Nios II plugins.

Table 2-5. Eclipse CDT Features Not Supported by the Nios Il Plugins (Part 1 of 3)
Unsupported CDT Feature Alternative Nios Il Feature
New Project Wizard
C/C++
m G Project To create a new project, use one of the following Nios Il
wizards:
m C++ Project m Nios Il Application

m Nios Il Application and BSP from Template
m Nios Il Board Support Package
m Nios Il Library

Nios Il Software Developer’s Handbook January 2014 Altera Corporation

Chapter 2: Getting Started with the Graphical User Interface
Eclipse Usage Notes

2-41

Table 2-5. Eclipse CDT Features Not Supported by the Nios Il Plugins (Part 2 of 3)

Unsupported CDT Feature
m Convert to a C/C++ Project
m Source Folder

Alternative Nios Il Feature

Build configurations

m Right-click project and point to Build Configurations
Debugger tab
= Stop on startup

The Nios Il plugins only support a single build configuration.

This feature is supported only at the top of main ().

Exclude from Build (from version 10.0 onwards)

Right-click source files

‘ Use Remove from Nios Il Build and Add to Nios Il Build.

Project Properties

C/C++ Build
m Builder Settings
m Makefile generation

= Build location

m Behavior
= Build on resource save (Auto build)
m Build Variables
Discovery Options
m Environment
Settings
m Tool Chain Editor
= Current builder

= Used tools

By default, the Nios Il SBT generates makefiles
automatically.

The build location is determined with the Nios Il Application
Properties or Nios Il BSP Properties dialog box.

To change the toolchain, use the Current tool chain option

Project Properties, continued

C/C++ General
m Enable project specific settings
m Documentation tool comments
m Documentation
m File Types
m Indexer
= Build configuration for the indexer
m Language Mappings
m Paths and Symbols

The Nios Il plugins only support a single build configuration.

Use Nios 1l Application Properties and Nios Il Application
Paths

January 2014 Altera Corporation

Nios Il Software Developer’s Handbook

2-42

Chapter 2: Getting Started with the Graphical User Interface
Document Revision History

Table 2-5. Eclipse CDT Features Not Supported by the Nios Il Plugins (Part 3 of 3)

Unsupported CDT Feature Alternative Nios Il Feature

Window Preferences

C/C++
m Build scope

m Build Variables
m Environment
m File Types

m Indexer

m Language Mappings
m New CDT project wizard

m Build project configurations

The Nios Il plugins only support a single build configuration.

m Build configuration for the indexer The Nios Il plugins only support a single build configuration.

Document Revision History

Table 2—-6 shows the revision history for this document.

Table 2-6. Document Revision History

Date Version

Changes

January 2014 13.1.0

Added section on Nios Il Hardware v2 beta
Updated GCC4 toolchain from 4.1.2 to GGC 4.7.3
Removed “Managing Toolchains in Eclipse” section.

May 2011 11.0.0

Introduction of Qsys system integration tool impacts ModelSim flow
Launch configuration change requires re-importation of existing projects
Using variables to link to external resources

The GCC 3 toolchain is an optional feature

Minor corrections to Table 2-5 on page 2-54

February 2011 10.1.0

Do not mix versions of GCC.

How to create and use a library archive file (.a).
How to create a software package.

Describe Eclipse launch groups.

Removed “Referenced Documents” section.

July 2010 10.0.0

Document how to import and use projects with user-managed source files.
Document how to import and use projects with linked resources.
Document Remove from Nios Il Build command.

Update BSP Editor documentation.

m Document Add Memory Device command.

= Document Enable File Generation tab.

November 2009 9.1.0

Initial release.

Nios Il Software Developer’s Handbook

January 2014 Altera Corporation

A |:| =/ 3. Getting Started from the Command

® Line

NII52014-13.1.0

The Nios® II Software Build Tools (SBT) allows you to construct a wide variety of
complex embedded software systems using a command-line interface. From this
interface, you can execute Software Built Tools command utilities, and use scripts (or
other tools) to combine the command utilities in many useful ways.

This chapter introduces you to project creation with the SBT at the command line.
This chapter includes the following sections:

m “Advantages of Command-Line Software Development”

m “Outline of the Nios II SBT Command-Line Interface”

m “Getting Started in the SBT Command Line”

m “Software Build Tools Scripting Basics” on page 3—7

® “Running make” on page 3-10

Advantages of Command-Line Software Development

The Nios II SBT command line offers the following advantages over the Nios II SBT
for Eclipse™:

® You can invoke the command line tools from custom scripts or other tools that you
might already use in your development flow.

B On acommand line, you can run several Tcl scripts to control the creation of a
board support package (BSP).

B You can use command line tools in a bash script to build several projects at once.
The Nios II SBT command-line interface is designed to work in the Nios II Command

Shell.

For details about the Nios II Command Shell, refer to “The Nios II Command Shell”
on page 3-2.

Outline of the Nios Il SBT Command-Line Interface

The Nios II SBT command-line interface consists of:
m Command-line utilities

m Command-line scripts

m Tcl commands

m Tcl scripts

These elements work together in the Nios Il Command Shell to create software
projects.

© 2014 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX are Reg. U.S. Pat. & Tm. Off.
and/or trademarks of Altera Corporation in the U.S. and other countries. All other trademarks and service marks are the property of their respective holders as described at
www.altera.com/common/legal.html. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera’s standard warranty, but
reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
specifications before relying on any published information and before placing orders for products or services.

Nios Il Software Developer’s Handbook IM|

January 2014

Subscribe

http://www.altera.com/common/legal.html
https://www.altera.com/servlets/subscriptions/alert?id=NII52014

3-2

Chapter 3: Getting Started from the Command Line
Outline of the Nios || SBT Command-Line Interface

Utilities

Scripts

The Nios II SBT command-line utilities enable you to create software projects. You can
call these utilities from the command line or from a scripting language of your choice
(such as perl or bash). On Windows, these utilities have a .exe extension. The

Nios II SBT resides in the <Nios II EDS install path>/sdk2/bin directory.

Refer to “Altera-Provided Development Tools” in the Nios II Software Build Tools
chapter of the Nios II Software Developer’s Handbook for a summary of the
command-line utilities provided by the Nios II SBT.

Nios II SBT scripts implement complex behavior that extends the capabilities
provided by the utilities.

Table 3—-1 summarizes the scripts provided with the Nios II SBT.

Table 3-1. Nios Il SBT Scripts

Command Summary
nios2-hsp Creates or updates a BSP
create-this-app (7) Creates a software example and builds it

Creates a BSP for a specific hardware design

create-this-bsp (7) example and builds it

Note to Table 3-1:

(1) There are create-this-app scripts for each software example and several create-this-bsp scripts for each hardware
design example. For more details, refer to “Nios Il Design Example Scripts” in the Nios I/ Software Build Tools
Reference chapter of the Nios Il Software Developer’s Handbook.

Tcl Commands

Tcl commands are a crucial component of the Nios II SBT. Tcl commands allow you to
exercise detailed control over BSP generation, as well as to define drivers and
software packages.

Tel Scripts

The SBT provides powerful Tcl scripting capabilities. In a Tcl script, you can query
project settings, specify project settings conditionally, and incorporate the software
project creation process in a scripted software development flow. The SBT uses Tcl
scripting to customize your BSP according to your hardware and the settings you
select. You can also write custom Tcl scripts for detailed control over the BSP.

The Nios Il Command Shell

The Nios Il Command Shell is a bash command-line environment initialized with the
correct settings to run Nios II command-line tools. The Command Shell supports the
GCC toolchain.

Nios Il Software Developer’s Handbook January 2014 Altera Corporation

http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf

Chapter 3: Getting Started from the Command Line 3-3
Getting Started in the SBT Command Line

“ e For general information about GCC toolchains, refer to “Altera-Provided
Development Tools” in the Nios II Software Build Tools chapter of the Nios II Software
Developer’s Handbook

Starting the Nios Il Command Shell

To open the Nios Il Command Shell, perform the following steps, depending on your
environment:

m In the Windows operating system, on the Start menu, point to Programs > Altera >
Nios II EDS <uversion>,and click Nios II <version> Command Shell:.

m In the Linux operating system, in a command shell, change directories to
<Nios II EDS install path>, and type the command nios2_command_shell.sh.

Auto-Executing a Command in the Nios Il Command Shell

In certain situations, you might need to run a command or a script automatically after
the Nios II Command Shell is initialized. When you start the Nios Il Command Shell
environment, to automatically execute a command perform one of the following
steps, depending on your environment:

m In the Windows operating system, execute the following command:

“<Nios II EDS install path>/Nios II Command Shell.bat" <command>+
m In the Linux operating system, execute the following command:

<Nios II EDS install path>/nios2_ command_shell.sh <command>+

For example, in Windows, to run an automated build, you might execute the
following command:

"<Nios II EDS install path>/Nios II Command Shell.bat" custom build.sh*

The Nios II Command Shell startup script (Nios II Command Shell.bat or

nios2_ command_shell.sh) makes no special assumptions about its initial
environment. You can use the Nios Il Command Shell with auto-execution from any
environment that accepts commands native to your host operating system. For
example, in Linux you can use crontab to schedule a job to run in the Nios II
Command Shell at a later time.

Getting Started in the SBT Command Line

Using the Nios II SBT on the command line is the best way to learn about it. The
following tutorial guides you through the process of creating, building, running, and
debugging a “Hello World” program with a minimal number of steps. Later chapters
provide more of the underlying details, allowing you to take more control of the
process. The goal of this chapter is to show you that the basic process is simple and
straightforward.

The Nios II SBT includes a number of scripts that demonstrate how to combine
command utilities to obtain the results you need. This tutorial uses a create-this-app
script as an example.

What You Need

To complete this tutorial, you must have the following:

January 2014 Altera Corporation Nios Il Software Developer’s Handbook

http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf

34

Chapter 3: Getting Started from the Command Line
Getting Started in the SBT Command Line

Altera Quartus® II development software, version 8.0 or later. The software must
be installed on a Windows or Linux computer that meets the Quartus II minimum
requirements.

The Altera Nios Il Embedded Design Suite (EDS), version 8.0 or later.
An Altera development board.
A download cable such as the Altera USB-Blaster™ cable.

You run the Nios II SBT commands from the Nios II Command Shell.

“% e For details about the Nios Il Command Shell, refer to “The Nios Il Command Shell”.

Creating hello_world for an Altera Development Board

In this section you create a simple “Hello World” project. To create and build the
hello _world example for an Altera development board, perform the following steps:

1.
2.

Start the Nios II Command Shell, as described in “The Nios II Command Shell”.

Create a working directory for your hardware and software projects. The
following steps refer to this directory as <projects>.

Change to the <projects> directory by typing the following command:

cd <projects>+

Locate a Nios II hardware example for your Altera development board. For
example, if you have a Stratix® IV GX FPGA Development Kit, you might select
<Nios II EDS install path>/examples/verilog/niosII_stratixIV_4sgx230/
triple_speed_ethernet_design.

Copy the hardware example to your <projects> working directory, using a
command such as the following:

cp -R /altera/100/nios2eds/examples/verilog/niosII_stratixIV 4sgx230/triple speed ethernet design .+

6.

Ensure that the working directory and all subdirectories are writable by typing the
following command:

chmod -R +w .r

The <projects> directory contains a subdirectory named software_examples/app/
hello_world. The following steps refer to this directory as <application>.

Change to the <application> directory by typing the following command:
cd <application>+
Type the following command to create and build the application:

./create-this-app*

The create-this-app script copies the application source code to the <application>
directory, runs nios2-app-generate-makefile to create a makefile (named Makefile),
and then runs make to create an Executable and Linking Format File (.elf). The
create-this-app script finds a compatible BSP by looking in <projects>/
software_examples/bsp. In the case of hello world, it selects the hal default BSP.

To create the example BSP, create-this-app calls the create-this-bsp script in the BSP
directory.

Nios Il Software Developer’s Handbook January 2014 Altera Corporation

Chapter 3: Getting Started from the Command Line 3-5
Getting Started in the SBT Command Line

Running hello_world on an Altera Development Board

To run the hello_world example on an Altera development board, perform the
following steps:

1. Start the Nios II Command Shell.

2. Download the SRAM Object File (.sof) for the Quartus II project to the Altera
development board. This step configures the FPGA on the development board
with your project’s associated SOPC Builder system.

The .sof file resides in <projects>, along with your Quartus II Project File (.qpf).
You download it by typing the following commands:

cd <projects>+
nios2-configure-sof+

The board is configured and ready to run the project’s executable code.

The nios2-configure-sof utility runs the Quartus II Programmer to download
the .sof file. You can also run the quartus_pgm command directly.

“ e For more information about programming the hardware, refer to the Nios II
Hardware Development Tutorial.

3. Start another command shell. If practical, make both command shells visible on
your desktop.

4. Inthe second command shell, run the Nios II terminal application to connect to the
Altera development board through the JTAG UART port by typing the following
command:

nios2-terminal+

5. Return to the original command shell, and ensure that <projects>/
software_examples/app/hello_world is the current working directory.

6. Download and run the hello_world executable program as follows:
nios2-download -g hello world.elf+
The following output appears in the second command shell:

Hello from Nios II!

An integrated development environment is the most powerful environment for
debugging a software project. You debug a command-line project by importing it to
the Nios I SBT for Eclipse. After you import the project, Eclipse uses your makefiles
to build the project. This two-step process combines the advantages of the SBT
command line development flow with the convenience of a GUI debugger.

This section discusses the process of importing and debugging the hello_world
application.

Import the hello_world Application
To import the hello_world application, perform the following steps:

1. Launch the Nios II SBT for Eclipse.

January 2014 Altera Corporation Nios Il Software Developer’s Handbook

http://www.altera.com/literature/tt/tt_nios2_hardware_tutorial.pdf
http://www.altera.com/literature/tt/tt_nios2_hardware_tutorial.pdf

3-6

Chapter 3: Getting Started from the Command Line
Getting Started in the SBT Command Line

=

On the File menu, click Import. The Import dialog box appears.
Expand the Nios II Project folder, and select Import Nios II project.
Click Next. The File Import wizard appears.

AT B

Click Browse and navigate to the <application> directory, containing the
hello_world application project.

o

Click OK. The wizard fills in the project path.
7. Type the project name hello_world in the Project name box.
8. Click Finish. The wizard imports the application project.

If you want to view the BSP source files while debugging, you also need to import the
BSP project into the Nios II SBT for Eclipse.

For a description of importing BSPs into Eclipse, refer to “Importing a Command-Line
Project” in the Getting Started with the Graphical User Interface chapter of the Nios 11
Software Developer’s Handbook.

Download Executable Code and Start the Debugger

To debug the software project, perform the following steps:

1. Right-click the hello world project, point to Debug As, and click Nios II
Hardware.

2. If the Confirm Perspective Switch dialog box appears, click Yes.

After a moment, you see the main () function in the editor. There is a blue arrow
next to the first line of code, indicating that execution is stopped on this line.

When targeting Nios II hardware, the Debug As command does the following
tasks:

m Creates a default debug configuration for the target board.
m Establishes communication with the target board

m Optionally verifies that the expected SOPC Builder system is configured in the
FPGA.

m Downloads the .elf file to memory on the target board.
a. Sets a breakpoint at main ().
m Instructs the Nios II processor to begin executing the code.

3. In the Run menu, click Resume to resume execution. You can also resume
execution by pressing F8.

When debugging a project in Eclipse, you can also pause, stop, and single-step the
program, set breakpoints, examine variables, and perform many other common
debugging tasks.

For more detailed information about debugging projects in the Nios II SBT for Eclipse,
refer to “Importing a Command-Line Project” and “Getting Started with Eclipse” in
the Getting Started with the Graphical User Interface chapter of the Nios II Software
Developer’s Handbook.

Nios Il Software Developer’s Handbook January 2014 Altera Corporation

http://www.altera.com/literature/hb/nios2/n2sw_nii52017.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52017.pdf

Chapter 3: Getting Started from the Command Line 3-7
Software Build Tools Scripting Basics

Software Build Tools Scripting Basics

This section provides an example to teach you how you can create a software
application using a command line script.

In this section, assume that you want to build a software application for a Nios II
system that features the lan91c111 component and supports the NicheStack® TCP/IP
stack. Furthermore, assume that you have organized the hardware design files and
the software source files as shown in Figure 3-1.

Figure 3-1. Simple Software Project Directory Structure

L/_J Hardware system files (e.g. standard.sopcinfo)

/_j software_examples
/l‘ app
/—j software examples (e.g. hello_worl

create-this-app
/l‘ bsp
/x‘ BSP examples (e.g. hal_standard)

create-this-bsp

Creating a BSP with a Script

One easy method for creating a BSP is to use the nios2-bsp script. The script in
Example 3-1 creates a BSP and then builds it.

Example 3-1. nios2-hsp

nios2-bsp ucosii . ../SOPC/ --cmd enable sw package altera iniche \
--set altera_iniche.iniche default_if lan91lclll
make

Table 3-2 shows the meaning of each argument to the nios2-bsp script in
Example 3-1.

January 2014 Altera Corporation Nios Il Software Developer’s Handbook

3-8

Chapter 3: Getting Started from the Command Line

Software Build Tools Scripting Basics

e For additional information about the nios2-bsp command, refer to “Nios II Software

Build Tools Utilities” in the Nios II Software Build Tools Reference chapter of the Nios II

Software Developer’s Handbook.

Tahle 3-2. nios2-hsp Example Arguments

Argument

Purpose

Further Information

Sets the operating system

“Settings Managed by the
Software Build Tools” in the
Nios Il Software Build Tools

hardware project

ucosii to MicroG/0S-II Reference chapter of the
Nios Il Software Developer’s
Handbook
Specifies the directory in
which the BSP is to be —
created
/sope/ Points to the location of the .

--cmd enable sw package altera iniche

Adds the NicheStack TCP/IP
stack software package to
the BSP

“Settings Managed by the
Software Build Tools” and
“Software Build Tools Tcl
Commands” in the Nios I/
Software Build Tools
Reference chapter of the
Nios Il Software Developer’s
Handbook

--set altera iniche.iniche default if lan91clll

Specifies the default
hardware interface for the
NicheStack TCP/IP Stack -
Nios Il Edition

“Settings Managed by the
Software Build Tools” in the
Nios Il Software Build Tools
Reference chapter of the
Nios Il Software Developer’s
Handbook

Nios Il Software Developer’s Handbook

January 2014 Altera Corporation

http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf

Chapter 3: Getting Started from the Command Line 3-9
Software Build Tools Scripting Basics

Figure 3-2 shows the flow to create a BSP using the nios2-bsp script. The nios2-bsp
script uses the .sopcinfo file to create the BSP files. You can override default settings
chosen by nios2-bsp by supplying command-line arguments, Tcl scripts, or both.

Figure 3-2. nios2-hsp Command Flow

<design> (e.g. standard)

Quartus Il files (e.g. standard.qpf)

Hardware system files (e.g. standard.sopcinfo)

I

software_examples

/1‘ app
/_T software examples (e.g. hello_world)

create-this-app
bsp
/_T BSP examples (e.g. hal_standard)

create-this-bsp

Creating an Application Project with a Script

You use nios2-app-generate-makefile to create application projects. The script in
Example 3-2 creates an application project and builds it.

Example 3—-2. nios2-app-generate-makefile

nios2-app-generate-makefile --bsp-dir ../BSP \
--elf-name telnet-test.elf --src-dir source/
make

Table 3-3 shows the meaning of each argument in Example 3-2.

Table 3-3. nios2-app-generate-makefile Example Arguments

Argument Purpose

Specifies the location of the BSP on which this
application is based

--elf-name telnet-test.elf Specifies the name of the executable file

Tells nios2-app-generate-makefile where to find the
C source files

--bsp-dir ../BSP

--src-dir source/

January 2014 Altera Corporation Nios Il Software Developer’s Handbook

3-10

Chapter 3: Getting Started from the Command Line
Running make

“ e For further information about each command argument in Table 3-3, refer to “Nios II

Software Build Tools Utilities” in the Nios II Software Build Tools Reference chapter of
the Nios 1I Software Developer’s Handbook. For more detail about the software example
scripts, refer to “Nios II Design Example Scripts” in the Nios II Software Build Tools
Reference chapter of the Nios II Software Developer’s Handbook.

Running make

nios2-bsp places all BSP files in the BSP directory, specified on the command line with
argument --bsp-dir. After running nios2-bsp, you run make, which compiles the
source code. The result of compilation is the BSP library file, also in the BSP directory.
The BSP is ready to be linked with your application.

You can specify multiple targets on a make command line. For example, the following
command removes existing object files in the current project directory, builds the
project, downloads the project to a board, and runs it:

make clean download-elf+

You can modify an application or user library makefile with the
nios2-lib-update-makefile and nios2-app-update-makefile utilities. With these
utilities, you can execute the following tasks:

m Add source files to a project
m Remove source files from a project
m Add compiler options to a project’s make rules

m Modify or remove compiler options in a project’s make rules

Creating Memory Initialization Files

To create memory initialization files for a Nios II system, you can use the Nios II
Command Shell. Change to the software application folder, and type:

make mem init generate+

This command creates the memory initialization and simulation files for all memory
devices. It also generates a Quartus II IP File (.qip). The .qip file tells the Quartus II
software where to find the initialization files. Add the .qip file to your Quartus II
project.

Nios Il Software Developer’s Handbook January 2014 Altera Corporation

http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf

Chapter 3: Getting Started from the Command Line 3-1
Document Revision History

Document Revision History

Table 3—4 shows the revision history for this document.

Tahle 3-4. Document Revision History

Date Version Changes
Updated GCC4 toolchain from 4.1.2 to GCC 4.7.3.
Removed references to the Nios Il IDE.
January 2014 13.1.0
Removed references to GGC 3.
Removed the “Using the Nios I C2H Compiler” section.
Can auto-execute a Command in the Nios Il Command Shell
May 2011 11.0.0 . ,
The GCC 3 toolchain is an optional feature
Do not mix versions of GCC.
February 2011 10.1.0)
Removed “Referenced Documents” section.
Introduction of GCC 4.
July 2010 10.0.0)
Discuss usage of GCC 3 and GCC 4 command shells.
Repurpose and retitle this chapter as an introduction to Nios Il Software Build Tools
command-line usage.
November 2009 9.1.0]))))
Information about the BSP Editor moved to the Getting Started with the Graphical User
Interface chapter.
Describe BSP Editor.
March 2009 9.0.0 Reprganlze and update information and terminology to clarify role of Nios Il Software
Build Tools.
m Correct minor typographical errors.
May 2008 8.1.0 | Maintenance release.
October 2007 790 Repurpose this chapter as a “getting started” guide. Move descriptive and reference material
to separate chapters.
May 2007 7.1.0 | Initial Release.

January 2014 Altera Corporation

Nios Il Software Developer’s Handbook

http://www.altera.com/literature/hb/nios2/n2sw_nii52017.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52017.pdf

3-12 Chapter 3: Getting Started from the Command Line
Document Revision History

Nios Il Software Developer’s Handbook January 2014 Altera Corporation

A |:| = o A 4. Nios Il Software Build Tools

This chapter describes the Nios® II Software Build Tools (SBT), a set of utilities and
scripts that creates and builds embedded C/C++ application projects, user library
projects, and board support packages (BSPs). The Nios II SBT supports a repeatable,
scriptable, and archivable process for creating your software product.

You can invoke the Nios II SBT through either of the following user interfaces:

m The Eclipse™ GUI

m The Nios I Command Shell

The purpose of this chapter is to make you familiar with the internal functionality of

the Nios II SBT, independent of the user interface employed.

'~ Before reading this chapter, consider getting an introduction to the Nios II SBT by first
reading one of the following chapters:

m Getting Started with the Graphical User Interface chapter of the Nios II Software
Developer’s Handbook

m Getting Started from the Command Line chapter of the Nios II Software Developer’s
Handbook

This chapter contains the following sections:
B “Road Map for the SBT”
m “Makefiles” on page 4-3

“Nios II Embedded Software Projects” on page 4-5
“Common BSP Tasks” on page 4-8

“Details of BSP Creation” on page 4-20

“Tcl Scripts for BSP Settings” on page 4-27
“Revising Your BSP” on page 4-30

“Specifying BSP Defaults” on page 4-35

“Device Drivers and Software Packages” on page 4-39
m “Boot Configurations for Altera Embedded Software” on page 440
m “Altera-Provided Embedded Development Tools” on page 442

m “Restrictions” on page 4-47

© 2014 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX are Ref U.S. Pat. & Tm. Off.
and/or trademarks of Altera Corporation in the U.S. and other countries. All other trademarks and service marks are the property of their respective holders as described at
www.altera.com/common/legal.html. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera’s standard warranty, but
reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
specifications before relying on any published information and before placing orders for products or services.

Nios |1 Software Developer’s Handbook B
January 2014

Subscribe

http://www.altera.com/common/legal.html
https://www.altera.com/servlets/subscriptions/alert?id=NII52015
http://www.altera.com/literature/hb/nios2/n2sw_nii52017.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52014.pdf

4-2

Chapter 4: Nios Il Software Build Tools
Road Map for the SBT

This chapter assumes you are familiar with the following topics:

m The GNU make utility. Altera recommends you use version 3.80 or later. On the
Windows platform, GNU make version 3.80 is provided with the Nios II EDS.

“ e You can obtain general information about GNU make from the Free

Software Foundation, Inc. (www.gnu.org).
m Board support packages.

Depending on how you use the tools, you might also need to be familiar with the
following topics:

B Micrium MicroC/OS-II. For information, refer to MicroC/OS-II - The Real Time
Kernel by Jean J. Labrosse (CMP Books).

m Tcl scripting language.

Road Map for the SBT

Before you start using the Nios II SBT, it is important to understand its scope. This
section helps you understand their purpose, what they include, and what each tool
does. Understanding these points helps you determine how each tool fits in with your
development process, what parts of the tools you need, and what features you can
disregard for now.

What the Build Tools Create

The purpose of the build tools is to create and build Nios II software projects. A
Nios II project is a makefile with associated source files.

The SBT creates the following types of projects:

m Nios Il application—A program implementing some desired functionality, such as
control or signal processing.

m Nios II BSP—A library providing access to hardware in the Nios II system, such as
UARTs and other I/O devices. A BSP provides a software runtime environment
customized for one processor in a hardware system. A BSP optionally also
includes the operating system, and other basic system software packages such as
communications protocol stacks.

m User library—A library implementing a collection of reusable functions, such as
graphics algorithms.

Nios Il Software Developer’s Handbook January 2014 Altera Corporation

www.gnu.org

Chapter 4: Nios Il Software Build Tools 4-3
Makefiles

Comparing the Command Line with Eclipse

Aside from the Eclipse GUI, there are very few differences between the SBT command
line and the Nios II SBT for Eclipse. Table 4-1 lists the differences.

Table 4-1. Differences hetween Nios Il SBT for Eclipse and the Command Line

Feature Eclipse Command Line

Specify sources automatically, e.g. Specify sources manually using

Project source file management by dragging anq dropping into command arguments
project
Debugging Yes Import project to Eclipse

environment

Integrates with custom shell scripts and tool

No Yes
flows

The Nios II SBT for Eclipse provides access to a large, useful subset of SBT
functionality. Any project you create in Eclipse can also be created using the SBT from
the command line or in a script. Create your software project using the interface that is
most convenient for you. Later, it is easy to perform additional project tasks in the
other interface if you find it advantageous to do so.

Makefiles

Makefiles are a key element of Nios II C/C++ projects. The Nios II SBT includes
powerful tools to create makefiles. An understanding of how these tools work can
help you make the most optimal use of them.

The Nios II SBT creates two kinds of makefiles:

m Application or user library makefile—A simple makefile that builds the
application or user library with user-provided source files

m BSP makefile—A more complex makefile, generated to conform to user-specified
settings and the requirements of the target hardware system

It is not necessary to use to the generated application and user library makefiles if you
prefer to write your own. However, Altera recommends that you use the SBT to
manage and modify BSP makefiles.

Generated makefiles are platform-independent, calling only utilities provided with
the Nios II EDS (such as nios2-elf-gcc).

The generated makefiles have a straightforward structure, and each makefile has
in-depth comments explaining how it works. Altera recommends that you study
these makefiles for further information about how they work. Generated BSP
makefiles consist of a single main file and a small number of makefile fragments, all of
which reside in the BSP directory. Each application and user library has one makefile,
located in the application or user library directory.

Modifying Makefiles

It is not necessary to edit makefiles by hand. The Nios II SBT for Eclipse offers GUI
tools for makefile management.

January 2014 Altera Corporation Nios Il Software Developer’s Handbook

Chapter 4: Nios Il Software Build Tools
Makefiles

&

™
"

For further information, refer to the Getting Started with the Graphical User Interface
chapter of the Nios II Software Developer’s Handbook.

On the command line, the project type determines the correct utility or utilities to
update your makefile, as shown in Table 4-2.

Table 4-2. Command-Line Utilities for Updating Makefiles

Project Type

Utilities

Application

nios2-app-update-makefile

Library

nios2-lib-update-makefile

BSP (1)

nios2-hsp-update-settings
nios2-hsp-generate-files

Note to Table 4-2:

(1) For details about updating BSP makefiles, refer to “Updating Your BSP” on page 4-32.

After making changes to a makefile, run make clean before rebuilding your project. If
you are using the Nios II SBT for Eclipse, this happens automatically.

Makefile Targets

Table 4-3 shows the application makefile targets. Altera recommends that you study
the generated makefiles for further details about these targets.

Table 4-3. Application Makefile Targets

Target

Operation

help

Displays all available application makefile targets.

all (default)

Builds the associated BSP and libraries, and then builds the application
executable file.

app Builds only the application executable file.
bsp Builds only the BSP.
libs Builds only the libraries and the BSP.
clean Performs a clean build of the application. Deletes all application-related
€ generated files. Leaves associated BSP and libraries alone.
Performs a clean build of the application, and associated BSP and libraries
clean all .
- (if any).
clean bsp Performs a clean build of the BSP.

clean libs

Performs a clean build of the libraries and the BSP.

download-elf

Builds the application executable file and then downloads and runs it.

program-flash

Runs the Nios Il flash programmer to program your flash memory.

Note to Table 4-3:

(1) Youcan use the download-elf makefile target if the host system is connected to a single USB-Blaster™ download
cable. If you have more than one download cable, you must download your executable with a separate command.
Set up a run configuration in the Nios Il SBT for Eclipse, or use nios2-download, with the --cable option to
specify the download cable.

Nios Il Software Developer’s Handbook

January 2014 Altera Corporation

http://www.altera.com/literature/hb/nios2/n2sw_nii52017.pdf

Chapter 4: Nios Il Software Build Tools 4-5
Nios Il Embedded Software Projects

Nios Il Embedded Software Projects

The Nios I SBT supports the following kinds of software projects:
m C/C++ application projects

m C/C++ user library projects

m BSP projects

This section discusses each type of project in detail.

Applications and Libraries

The Nios II SBT has nearly identical support for C/C++ applications and libraries.
The support for applications and libraries is very simple. For each case, the SBT
generates a private makefile (named Makefile). The private makefile is used to build
the application or user library.

The private makefile builds one of two types of files:
m A .elf file—For an application
m Alibrary archive file (.a)—For a user library

For a user library, the SBT also generates a public makefile, called public.mk. The
public makefile is included in the private makefile for any application (or other user
library) that uses the user library.

When you create a makefile for an application or user library, you provide the SBT
with a list of source files and a reference to a BSP directory. The BSP directory is
mandatory for applications and optional for libraries.

The Nios II SBT examines the extension of each source file to determine the
programming language. Table 4-4 shows the supported programming languages
with the corresponding file extensions.

Table 4-4. Supported Source File Types

File

Programming Language Extensions (1)

C .c

C++ .cpp, .CXxx, .cc
Nips [l assembly Iar_lguage; sources are built directly by the Nios Il assembler s

without preprocessing ’

Nios Il assembly language; sources are preprocessed by the Nios Il C s

preprocessor, allowing you to include header files

Note to Table 4-4:
(1) Allfile extensions are case-sensitive.

Board Support Packages

A Nios I BSP project is a specialized library containing system-specific support code.
A BSP provides a software runtime environment customized for one processor in a
hardware system. The BSP isolates your application from system-specific details such
as the memory map, available devices, and processor configuration.

January 2014 Altera Corporation Nios Il Software Developer’s Handbook

4-6 Chapter 4: Nios Il Software Build Tools
Nios Il Embedded Software Projects

A BSP includes a .a file, header files (for example, system.h), and a linker script
(linker.x). You use these BSP files when creating an application.

The Nios II SBT supports two types of BSPs: Altera® Hardware Abstraction Layer
(HAL) and Micrium MicroC/OS-II. MicroC/OS-1l is a layer on top of the Altera HAL
and shares a common structure.

Overview of BSP Creation

The Nios II SBT creates your BSP for you. The tools provide a great deal of power and
flexibility, enabling you to control details of your BSP implementation while
maintaining compatibility with a hardware system that might change.

By default, the tools generate a basic BSP for a Nios II system. If you require more
detailed control over the characteristics of your BSP, the Nios II SBT provides that
control, as described in the remaining sections of this chapter.

Parts of a Nios Il BSP

Hardware Abstraction Layer

The HAL provides a single-threaded UNIX-like C/C++ runtime environment. The
HAL provides generic I/O devices, allowing you to write programs that access
hardware using the newlib C standard library routines, such as printf (). The HAL
interfaces to HAL device drivers, which access peripheral registers directly,
abstracting hardware details from the software application. This abstraction
minimizes or eliminates the need to access hardware registers directly to connect to
and control peripherals.

“ e For complete details about the HAL, refer to the Hardware Abstraction Layer section

and the HAL API Reference chapter of the Nios II Software Developer’s Handbook.

newlib G Standard Library

newlib is an open source implementation of the C standard library intended for use
on embedded systems. It is a collection of common routines such as printf (),
malloc (), and open().

Device Drivers

Each device driver manages a hardware component. By default, the HAL instantiates
a device driver for each component in your hardware system that needs a device
driver. In the Nios II software development environment, a device driver has the
following properties:

B A device driver is associated with a specific hardware component.
B A device driver might have settings that impact its compilation. These settings

become part of the BSP settings.

Optional Software Packages

A software package is source code that you can optionally add to a BSP project to
provide additional functionality. The NicheStack® TCP/IP - Nios II Edition is an
example of a software package.

Nios Il Software Developer’s Handbook January 2014 Altera Corporation

http://www.altera.com/literature/hb/nios2/n2sw_nii5v2_02.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52010.pdf

Chapter 4: Nios Il Software Build Tools 4-7
Nios Il Embedded Software Projects

In the Nios II software development environment, a software package typically has
the following properties:

m A software package is not associated with specific hardware.

m A software package might have settings that impact its compilation. These settings
become part of the BSP settings.

In the Nios II software development environment, a software package is distinct from
a library project. A software package is part of the BSP project, not a separate library
project.

Optional Real-Time Operating System

The Nios II EDS includes an implementation of the third-party MicroC/OS-II RTOS
that you can optionally include in your BSP. MicroC/OS-I1 is built on the HAL, and
implements a simple, well-documented RTOS scheduler. You can modify settings that
become part of the BSP settings. Other operating systems are available from
third-party vendors.

The Micrium MicroC/OS-II is a multi-threaded run-time environment. It is built on
the Altera HAL.

The MicroC/OS-II directory structure is a superset of the HAL BSP directory
structure. All HAL BSP generated files also exist in the MicroC/OS-II BSP.

The MicroC/OS-1I source code resides in the UCOSII directory. The UCOSII
directory is contained in the BSP directory, like the HAL directory, and has the same
structure (that is, src and inc directories). The UCOSII directory contains only copied
files.

The MicroC/OS-II BSP library archive is named libucosii_bsp.a. You use this file the
same way you use libhal_bsp.a in a HAL BSP.

Software Build Process

To create a software project with the Nios II SBT, you perform several high-level steps:

1. Obtain the hardware design on which the software is to run. When you are
learning about the build tools, this might be a Nios II design example. When you
are developing your own design, it is probably a design developed by someone in
your organization. Either way, you need to have the SOPC Information File
(.sopcinfo).

2. Decide what features the BSP requires. For example, does it need to support an
RTOS? Does it need other specialized software support, such as a TCP/IP stack?
Does it need to fit in a small memory footprint? The answers to these questions tell
you what BSP features and settings to use.

“ e For more information about available BSP settings, refer to the Nios II
Software Build Tools Reference chapter of the Nios 1I Software Developer’s
Handbook.

January 2014 Altera Corporation Nios Il Software Developer’s Handbook

http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf

4-8

Chapter 4: Nios Il Software Build Tools
Common BSP Tasks

Define a BSP. Use the Nios II SBT to specify the components in the BSP, and the
values of any relevant settings. The result of this step is a BSP settings file, called
settings.bsp. For more information about creating BSPs, refer to “Board Support
Packages” on page 4-5.

Create a BSP makefile using the Nios II build tools.

Optionally create a user library. If you need to include a custom software user
library, you collect the user library source files in a single directory, and create a
user library makefile. The Nios II build tools can create a makefile for you. You can
also create a makefile by hand, or you can autogenerate a makefile and then
customize it by hand. For more information about creating user library projects,
refer to “Applications and Libraries” on page 4-5.

Collect your application source code. When you are learning, this might be a
Nios II software example. When you are developing a product, it is probably a
collection of C/C++ source files developed by someone in your organization. For
more information about creating application projects, refer to “Applications and
Libraries” on page 4-5.

Create an application makefile. The easiest approach is to let the Nios II build tools
create the makefile for you. You can also create a makefile by hand, or you can
autogenerate a makefile and then customize it by hand. For more information
about creating makefiles, refer to “Makefiles” on page 4-3.

Common BSP Tasks

The Nios II SBT creates a BSP for you with useful default settings. However, for many
tasks you must manipulate the BSP explicitly. This section describes the following
common BSP tasks, and how you carry them out.

“Using Version Control” on page 4-9

“Copying, Moving, or Renaming a BSP” on page 4-10

“Handing Off a BSP” on page 4-10

“Creating Memory Initialization Files” on page 4-11

“Modifying Linker Memory Regions” on page 4-11

“Creating a Custom Linker Section” on page 4-12

“Changing the Default Linker Memory Region” on page 4-16
“Changing a Linker Section Mapping” on page 4-16

“Creating a BSP for an Altera Development Board” on page 4-17
“Querying Settings” on page 4-18

“Managing Device Drivers” on page 4-18

“Creating a Custom Version of newlib” on page 4-18
“Controlling the stdio Device” on page 4-19

“Configuring Optimization and Debugger Options” on page 4-19

Nios Il Software Developer’s Handbook January 2014 Altera Corporation

Chapter 4: Nios Il Software Build Tools 4-9

Common BSP Tasks

Although this section describes tasks in terms of the SBT command line flow, you can
also carry out most of these tasks with the Nios II SBT for Eclipse, described in the
Getting Started with the Graphical User Interface chapter of the Nios II Software
Developer’s Handbook.

Adding the Nios Il SBT to Your Tool Flow

A common reason for using the SBT is to enable you to integrate your software build
process with other tools that you use for system development, including non-Altera
tools. This section describes several scenarios in which you can incorporate the build
tools in an existing tool chain.

Using Version Control

One common tool flow requirement is version control. By placing an entire software
project, including both source and makefiles, under version control, you can ensure
reproducible results from software builds.

When you are using version control, it is important to know which files to add to your
version control database. With the Nios II SBT, the version control requirements
depend on what you are trying to do and how you create the BSP.

If you create a BSP by running your own script that calls nios2-bsp, you can put your
script under version control. If your script provides any Tcl scripts to nios2-bsp (using
the --script option), you must also put these Tcl scripts under version control. If you
install a new release of Nios II EDS and run your script to create a new BSP or to
update an existing BSP, the internal implementation of your BSP might change
slightly due to improvements in Nios II EDS.

Refer to “Revising Your BSP” on page 4-30 for a discussion of BSP regeneration with
Nios II EDS updates.

If you create a BSP by running nios2-bsp manually on the command line or by
running your own script that calls nios2-bsp-generate-files, you can put your BSP
settings file (typically named settings.bsp) under version control. As in the scripted
nios2-bsp case, if you install a new release of Nios II EDS and recreate your BSP, the
internal implementation might change slightly.

If you want the exact same BSP after installing a new release of Nios II EDS, create
your BSP and then put the entire BSP directory under version control before running
make. If you have already run make, run make clean to remove all built files before
adding the directory contents to your version control database. The SBT places all the
files required to build a BSP in the BSP directory. If you install a new release of

Nios II EDS and run make on your BSP, the implementation is the same, but the binary
output might not be identical.

If you create a script that uses the command-line tools nios2-bsp-create-settings and
nios2-bsp-generate-files explicitly, or you use these tools directly on the command
line, it is possible to create the BSP settings file in a directory different from the
directory where the generated BSP files reside. However, in most cases, when you
want to store a BSP’s generated files directory under source control, you also want to
store the BSP settings file. Therefore, it is best to keep the settings file with the other
BSP files. You can rebuild the project without the BSP settings file, but the settings file
allows you to update and query the BSP.

January 2014 Altera Corporation Nios Il Software Developer’s Handbook

http://www.altera.com/literature/hb/nios2/n2sw_nii52017.pdf

4-10 Chapter 4: Nios Il Software Build Tools
Common BSP Tasks

"=~ Because the BSP depends on a .sopcinfo file, you must usually store the .sopcinfo file
in source control along with the BSP. The BSP settings file stores the .sopcinfo file path
as a relative or absolute path, according to the definition on the nios2-bsp or
nios2-bsp-create-settings command line. You must take the path into account when
retrieving the BSP and the .sopcinfo file from source control.

Copying, Moving, or Renaming a BSP

BSP makefiles have only relative path references to project source files. Therefore you
are free to copy, move, or rename the entire BSP. If you specify a relative path to the
SOPC system file when you create the BSP, you must ensure that the .sopcinfo file is
still accessible from the new location of the BSP. This .sopcinfo file path is stored in
the BSP settings file.

Run make clean when you copy, move, or rename a BSP. The make dependency files
(.d) have absolute path references. make clean removes the .d files, as well as linker
object files (.0) and .a files. You must rebuild the BSP before linking an application
with it. You can use the make clean bsp command to combine these two operations.
“%e Forinformation about .d files, refer to the GNU make documentation, available from
the Free Software Foundation, Inc. (www.gnu.org).

Another way to copy a BSP is to run the nios2-bsp-generate-files command to
populate a BSP directory and pass it the path to the BSP settings file of the BSP that
you wish to copy.

If you rename or move a BSP, you must manually revise any references to the BSP
name or location in application or user library makefiles.

Handing Off a BSP

In some engineering organizations, one group (such as systems engineering) creates a
BSP and hands it off to another group (such as applications software) to use while
developing an application. In this situation, Altera recommends that you as the BSP
developer generate the files for a BSP without building it (that is, do not run make) and
then bundle the entire BSP directory, including the settings file, with a utility such as
tar or zip. The software engineer who receives the BSP can simply run make to build
the BSP.

Linking and Locating

When autogenerating a HAL BSP, the SBT makes some reasonable assumptions about
how you want to use memory, as described in “Specifying the Default Memory Map”
on page 4-38. However, in some cases these assumptions might not work for you. For
example, you might implement a custom boot configuration that requires a
bootloader in a specific location; or you might want to specify which memory device
contains your interrupt service routines (ISRs).

This section describes several common scenarios in which the SBT allows you to
control details of memory usage.

Nios Il Software Developer’s Handbook January 2014 Altera Corporation

www.gnu.org

Chapter 4: Nios Il Software Build Tools 4-1

Common BSP Tasks

Creating Memory Initialization Files

The mem_init.mk file includes targets designed to help you create memory
initialization files (.dat, .hex, .sym, and .flash). The mem_init.mk file is designed to
be included in your application makefile. Memory initialization files are used for
HDL simulation, for Quartus® II compilation of initializable FPGA on-chip memories,
and for flash programming. Initializable memories include M512 and M4K, but not
MRAM.

Table 4-5 shows the mem_init.mk targets. Although the application makefile
provides all these targets, it does not build any of them by default. The SBT creates the
memory initialization files in the application directory (under a directory named
mem_init). The SBT optionally copies them to your Quartus II project directory and
HDL simulation directory, as described in Table 4-5.

The Nios II SBT does not generate a definition of QUARTUS_PROJECT DIR in your
application makefile. If you have an on-chip RAM, and require that a compiled
software image be inserted in your SRAM Object File (.sof) at Quartus II compilation,
you must manually specify the value of QUARTUS PROJECT DIR in your application
makefile. You must define QUARTUS_PROJECT DIR before the mem_init.mk file is
included in the application makefile, as in the following example:

QUARTUS_PROJECT DIR = ../my_hw design
MEM_INIT FILE := $(BSP_ROOT DIR)/mem init.mk
include $(MEM_INIT FILE)

Table 4-5. mem_init.mk Targets

Target Operation

Generates memory initialization files in the application mem_init
directory. If the QUARTUS PROJECT DIR variable is defined,
mem_init.mk copies memory initialization files to your Quartus II
mem_init install project directory named $ (QUARTUS PROJECT DIR). If the
SOPC_NAME variable is defined, mem_init.mk copies memory
initialization files to your HDL simulation directory named

$ (QUARTUS PROJECT DIR)/$(SOPC NAME) sim.

Generates all memory initialization files in the application mem_init
directory.

This target also generates a Quartus 11 IP File (.qip). The .qip file tells
the Quartus Il software where to find the initialization files.

Removes the memory initialization files from the application
mem_init directory.

mem_init generate

mem_init_clean

hex Generates all hex files.
dat Generates all dat files.
sym Generates all sym files.
flash Generates all flash files.

Generates all memory initialization files for <memory name>

memor name
< Y g component.

Modifying Linker Memory Regions

If the linker memory regions that are created by default do not meet your needs, BSP
Tcl commands let you modify the memory regions as desired.

January 2014 Altera Corporation Nios Il Software Developer’s Handbook

4-12

Chapter 4: Nios Il Software Build Tools
Common BSP Tasks

Suppose you have a memory region named onchip_ram. Example 4-1 shows a Tcl
script named reserve_1024_onchip_ram.tcl that separates the top 1024 bytes of
onchip_ram to create a new region named onchip_special.

For an explanation of each Tcl command used in this example, refer to the Nios II
Software Build Tools Reference chapter of the Nios II Software Developer’s Handbook.

Example 4-1. Reserved Memory Region

Get region information for onchip ram memory region.

Returned as a list.

set region info [get memory region onchip ram]

Extract fields from region information list.

set region_name [lindex $region_info 0]

set slave desc [lindex $region info 1]

set offset [lindex S$region info 2]

set span [lindex S$region_info 3]

Remove the existing memory region.

delete memory region S$region name

Compute memory ranges for replacement regions.

set split span 1024

set new_span [expr $span-$split spanl

set split offset [expr Soffset+S$new_span]

Create two memory regions out of the original region.
add_memory region onchip ram $slave desc $Soffset $new span
add_memory_ region onchip special $slave_desc $split offset $split_span

If you pass this Tcl script to nios2-bsp, it runs after the default Tcl script runs and sets
up a linker region named onchip_ ram0. You pass the Tcl script to nios2-bsp as follows:

nios2-bsp hal my bsp --script reserve 1024 onchip ram.tcl¢

Take care that one of the new memory regions has the same name as the original
memory region.

If you run nios2-bsp again to update your BSP without providing the --script
option, your BSP reverts to the default linker memory regions and your
onchip_special memory region disappears. To preserve it, you can either provide the
--script option to your Tcl script or pass the DONT CHANGE keyword to the default Tcl
script as follows:

nios2-bsp hal my bsp --default memory regions DONT CHANGE*

Altera recommends that you use the --script approach when updating your BSP.
This approach allows the default Tcl script to update memory regions if memories are
added, removed, renamed, or resized. Using the DONT CHANGE keyword approach does
not handle any of these cases because the default Tcl script does not update the
memory regions at all.

For details about using the - -script argument, refer to “Calling a Custom BSP Tcl

Script” on page 4-27.

Creating a Custom Linker Section

The Nios II SBT provides a Tcl command, add_section mapping, to create a linker
section.

Nios Il Software Developer’s Handbook January 2014 Altera Corporation

http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf

Chapter 4: Nios Il Software Build Tools 4-13
Common BSP Tasks

Table 4-6 lists the default section names. The default Tcl script creates these default
sections for you using the add_section mapping Tcl command.

Table 4-6. Nios Il Default Section Names

.entry

.exceptions

.text

.rodata

.rwdata

.bss

.heap

.stack

Creating a Linker Section for an Existing Region

To create your own section named special_section that is mapped to the linker
region named onchip special, use the following command to run nios2-bsp:

nios2-bsp hal my bsp --cmd add section mapping special section onchip special#

When the nios2-bsp-generate-files utility (called by nios2-bsp) generates the linker
script linker.x, the linker script has a new section mapping. The order of section
mappings in the linker script is determined by the order in which the

add_section mapping command creates the sections. If you use nios2-bsp, the default
Tel script runs before the --cmd option that creates the special section section.

If you run nios2-bsp again to update your BSP, you do not need to provide the
add_section mapping command again because the default Tcl script only modifies
section mappings for the default sections listed in Table 4-6.

Dividing a Linker Region to Create a New Region and Section

Example 4-2 creates a section named .isrs in the

tightly coupled instruction_memory on-chip memory. This example works with
any hardware design containing an on-chip memory named

tightly coupled instruction memory connected to a Nios II instruction master.

Example 4-2. Tcl Script to Create New Region and Section

Get region information for tightly coupled instruction memory memory region.
Returned as a list.

set region info [get memory region tightly coupled instruction memory]

Extract fields from region information list.

set region name [lindex S$region info 0]

set slave [lindex $region info 1]

set offset [lindex Sregion_info 2]

set span [lindex S$region info 3]

Remove the existing memory region.

delete memory region $region name

Compute memory ranges for replacement regions.

set split span 1024

set new_span [expr $span-$split span]

set split offset [expr Soffset+$new span]

Create two memory regions out of the original region.

add_memory region tightly coupled instruction memory $slave s$offset $new_span
add_memory region isrs region $slave $split offset $split span

add_section mapping .isrs isrs region

January 2014 Altera Corporation Nios Il Software Developer’s Handbook

4-14 Chapter 4: Nios Il Software Build Tools
Common BSP Tasks

The Tecl script in Example 4-2 script splits off 1 KB of RAM from the region named
tightly coupled instruction_memory, gives it the name isrs_region, and then calls
add_section mapping to add the .isrs section to isrs_region.

To use such a Tcl script, you would execute the following steps:
1. Create the Tcl script as shown in Example 4-2.

2. Edit your create-this-bsp script, and add the following argument to the nios2-bsp
command line:

--script <script names.tcl

3. In the BSP project, edit timer_interrupt_latency.h. In the
timer_ interrupt latency irg() function, change the .section directive
from .exceptions to .isrs.

4. Rebuild the application by running make.

Nios Il Software Developer’s Handbook January 2014 Altera Corporation

Chapter 4: Nios Il Software Build Tools
Common BSP Tasks

4-15

After make completes successfully, you can examine the object dump file,

<project name>.objdump, illustrated in Example 4-3. The object dump file shows that
the new .isrs section is located in the tightly coupled instruction memory. This object
dump file excerpt shows a hardware design with an on-chip memory whose base
address is 0x04000000.

Example 4-3. Excerpts from Object Dump File

Sections:

Idx Name

6 .isrs

Size VMA LMA File off Algn

000000cO 04000c00 04000c00 000000b4 2**2
CONTENTS, ALLOC, LOAD, READONLY, CODE

9 .tightly coupled instruction memory 00000000 04000000 04000000

00013778

2**Q

SYMBOL TABLE:

00000000
30000020
30000150
30010el14
30011788
30013624
04000c00
00000020
03200000
04000000
04004000

1

N e el e R N

Q0000000

CONTENTS

.entry 00000000

.exceptions 00000000

.text 00000000

.rodata 00000000

.rwdata 00000000

.bss 00000000

.isrs 00000000

.ext flash 00000000

.epcs_controller 00000000

.tightly coupled instruction memory 00000000
.tightly coupled data memory 00000000

January 2014 Altera Corporation

Nios Il Software Developer’s Handbook

4-16

Chapter 4: Nios Il Software Build Tools
Common BSP Tasks

If you examine the linker script file, linker.x, illustrated in Example 4-4, you can see
that linker.x places the new region isrs_region in tightly-coupled instruction
memory, adjacent to the tightly coupled instruction memory region.

Example 4-4. Excerpt From linker.x

MEMORY

{

reset : ORIGIN = 0x0, LENGTH = 32

tightly coupled instruction memory : ORIGIN = 0x4000000, LENGTH = 3072
isrs region : ORIGIN = 0x4000c00, LENGTH = 1024

Changing the Default Linker Memory Region

The default Tcl script chooses the largest memory region connected to your Nios II
processor as the default region. All default memory sections specified in Table 4-6 on
page 4-13 are mapped to this default region. You can pass in a command-line option
to the default Tcl script to override this default mapping. To map all default sections
to onchip_ram, type the following command:

nios2-bsp hal my bsp --default sections mapping onchip ram+

If you run nios2-bsp again to update your BSP, the default Tcl script overrides your
default sections mapping. To prevent your default sections mapping from being
changed, provide nios2-bsp with the original --default_sections_mapping
command-line option or pass it the DONT_CHANGE value for the memory name instead
of onchip ram.

Changing a Linker Section Mapping

If some of the default section mappings created by the default Tcl script do not meet
your needs, you can use a Tcl command to override the section mappings selectively.
To map the .stack and .heap sections into a memory region named ram0, use the
following command:

nios2-bsp hal my bsp --cmd add_section mapping .stack ram0 \

--cmd add section mapping .heap ramO+
The other section mappings (for example, .text) are still mapped to the default linker
memory region.

If you run nios2-bsp again to update your BSP, the default Tcl script overrides your
section mappings for .stack and .heap because they are default sections. To prevent
your section mappings from being changed, provide nios2-bsp with the original
add_section mapping command-line options or pass the

--default sections mapping DONT CHANGE command line to nios2-bsp.

Altera recommends using the --cmd add_section mapping approach when updating
your BSP because it allows the default Tcl script to update the default sections
mapping if memories are added, removed, renamed, or resized.

Nios Il Software Developer’s Handbook January 2014 Altera Corporation

Chapter 4: Nios Il Software Build Tools 4-17

Common BSP Tasks

Other BSP Tasks

=

This section covers some other common situations in which the SBT is useful.

Creating a BSP for an Altera Development Board

In some situations, you need to create a BSP separate from any application. Creating a
BSP is similar to creating an application. To create a BSP, perform the following steps:

1. Start the Nios II Command Shell.

“ e For details about the Nios IT Command Shell, refer to the Getting Started
from the Command Line chapter of the Nios II Software Developer’s Handbook.

2. Create a working directory for your hardware and software projects. The
following steps refer to this directory as <projects>.

3. Make <projects> the current working directory.

4. Find a Nios Il hardware example corresponding to your Altera development
board. For example, if you have a Stratix® IV development board, you might select
<Nios II EDS install path>/examples/verilog/nioslI_stratixIV_4sgx230/
triple_speed_ethernet_design.

5. Copy the hardware example to your working directory, using a command such as
the following:

cp -R /altera/100/nios2eds/examples/verilog\
/niosII_stratixIV 4sgx230/triple speed ethernet design .+
6. Ensure that the working directory and all subdirectories are writable by typing the
following command:

chmod -R +w .+

The <projects> directory contains a subdirectory named software_examples/bsp.

The bsp directory contains several BSP example directories, such as hal_default.

Select the directory containing an appropriate BSP, and make it the current

working directory.

“ e For a description of the example BSPs, refer to “Nios Il Design Example
Scripts” in the Nios II Software Build Tools Reference chapter of the Nios II
Software Developer’s Handbook.

7. Create and build the BSP with the create-this-bsp script by typing the following
command:
./create-this-bsp+

Now you have a BSP, with which you can create and build an application.

Altera recommends that you examine the contents of the create-this-bsp script. It is a
helpful example if you are creating your own script to build a BSP. create-this-bsp
calls nios2-bsp with a few command-line options to create a customized BSP, and
then calls make to build the BSP.

January 2014 Altera Corporation Nios Il Software Developer’s Handbook

http://www.altera.com/literature/hb/nios2/n2sw_nii52001.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52001.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf

4-18 Chapter 4: Nios Il Software Build Tools
Common BSP Tasks

Querying Settings

If you need to write a script that gets some information from the BSP settings file, use
the nios2-bsp-query-settings utility. To maintain compatibility with future releases of
the Nios II EDS, avoid developing your own code to parse the BSP settings file.

If you want to know the value of one or more settings, run nios2-bsp-query-settings
with the appropriate command-line options. This command sends the values of the
settings you requested to stdout. Just capture the output of stdout in some variable in
your script when you call nios2-bsp-query-settings. By default, the output of
nios2-bsp-query-settings is an ordered list of all option values. Use the -show-names
option to display the name of the setting with its value.
“ =@ For details about the nios2-bsp-query-settings command-line options, refer to the
Nios II Software Build Tools Reference chapter of the Nios II Software Developer’s
Handbook.

Managing Device Drivers

The Nios I SBT creates an alt_sys_init.c file. By default, the SBT assumes that if a
device is connected to the Nios II processor, and a driver is available, the BSP must
include the most recent version of the driver. However, you might want to use a
different version of the driver, or you might not want a driver at all (for example, if
your application accesses the device directly).

The SBT includes BSP Tcl commands to manage device drivers. With these commands
you can control which driver is used for each device. When the alt_sys_init.c file is
generated, it is set up to initialize drivers as you have requested.

If you are using nios2-bsp, you disable the driver for the uart0 device as follows:
nios2-bsp hal my bsp --cmd set driver none uart0+

Use the --cmd option to call a Tcl command on the command line. The
nios2-bsp-create-settings command also supports the - -cmd option. Alternatively,
you can put the set_driver command in a Tcl script and pass the script to nios2-bsp
or nios2-bsp-create-settings with the --script option.

You replace the default driver for uart0 with a specific version of a driver as follows:

nios2-bsp hal my bsp --cmd set driver altera avalon uart:6.1 uart0¢

Creating a Custom Version of newlib

The Nios II EDS comes with a number of precompiled libraries. These libraries
include the newlib libraries (libc.a and libm.a). The Nios II SBT allows you to create
your own custom compiled version of the newlib libraries.

To create a custom compiled version of newlib, set a BSP setting to the desired
compiler flags. If you are using nios2-bsp, type the following command:

nios2-bsp hal my bsp --set hal.custom newlib flags "-00 -pg"+

Because newlib uses the open source configure utility, its build flow differs from other
files in the BSP. When Makefile builds the BSD, it runs the configure utility. The
configure utility creates a makefile in the build directory, which compiles the newlib
source. The newlib library files are copied to the BSP directory named newlib. The
newlib source files are not copied to the BSP.

Nios Il Software Developer’s Handbook January 2014 Altera Corporation

http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf

Chapter 4: Nios Il Software Build Tools 4-19

Common BSP Tasks

1=

The Nios II SBT recompiles newlib whenever you introduce new compiler flags. For
example, if you use compiler flags to add floating point math hardware support,
newlib is recompiled to use the hardware. Recompiling newlib might take several
minutes.

Controlling the stdio Device

The build tools offer several ways to control the details of your stdio device

configuration, such as the following:

m To prevent a default stdio device from being chosen, use the following command:
nios2-bsp hal my bsp --default stdio none¢

m To override the default stdio device and replace it with uart1, use the following
command:

nios2-bsp hal my bsp --default stdio uartl#

m To override the stderr device and replace it with uart2, while allowing the default
Tel script to choose the default stdout and stdin devices, use the following
command:

nios2-bsp hal my bsp --set hal.stderr uart2+¢

In all these cases, if you run nios2-bsp again to update your BSP, you must provide
the original command-line options again to prevent the default Tcl script from
choosing its own default stdio devices. Alternatively, you can call --default_stdio
with the DONT_CHANGE keyword to prevent the default Tcl script from changing the
stdio device settings.

Configuring Optimization and Debugger Options

By default, the Nios II SBT creates your project with the correct compiler options for
debugging environments. These compiler options turn off code optimization, and
generate a symbol table for the debugger.

You can control the optimization and debug level through the project makefile, which
determines the compiler options. Example 4-5 illustrates how a typical application
makefile specifies the compiler options.

Example 4-5. Default Application Makefile Settings

APP_CFLAGS_OPTIMIZATION := -0OO
APP_CFLAGS DEBUG LEVEL := -g

When your project is fully debugged and ready for release, you might want to enable
optimization and omit the symbol table, to achieve faster, smaller executable code. To
enable optimization and turn off the symbol table, edit the application makefile to
contain the symbol definitions shown in Example 4-6. The absence of a value on the
right hand side of the APP_CFLAGS DEBUG_LEVEL definition causes the compiler to omit
generating a symbol table.

Example 4-6. Application Makefile Settings with Optimization

APP CFLAGS OPTIMIZATION := -03
APP_CFLAGS DEBUG_LEVEL :=

January 2014 Altera Corporation Nios Il Software Developer’s Handbook

4-20

Chapter 4: Nios Il Software Build Tools
Details of BSP Creation

When you change compiler options in a makefile, before building the project, run
make clean to ensure that all sources are recompiled with the correct flags. For further
information about makefile editing and make clean, refer to “Applications and
Libraries” on page 4-5.

You individually specify the optimization and debug level for the application and BSP
projects, and any user library projects you might be using. You use the BSP settings
hal.make.bsp cflags debug and hal.make.bsp cflags optimization to specify the
optimization and debug level in a BSP, as shown in Example 4-7.

Example 4-7. Configuring a BSP for Debugging

nios2-bsp hal my bsp --set hal.make.bsp cflags debug -g \
--set hal.make.bsp cflags optimization -00¢

Alternatively, you can manipulate the BSP settings with a Tcl script.

You can easily copy an existing BSP and modify it to create a different build
configuration. For details, refer to “Copying, Moving, or Renaming a BSP” on
page 4-10.

To change the optimization and debug level for a user library, use the same procedure
as for an application.

Normally you must set the optimization and debug levels the same for the
application, the BSP, and all user libraries in a software project. If you mix settings,
you cannot debug those components which do not have debug settings. For example,
if you compile your BSP with the -00 flag and without the -g flag, you cannot step
into the newlib printf () function.

Details of BSP Creation

BSP creation is the same in the Nios II SBT for Eclipse as at the command line.

Figure 4-1 shows how the SBT creates a BSP. The nios2-bsp-create-settings utility
creates a new BSP settings file. For detailed information about BSP settings files, refer
to “BSP Settings File Creation” on page 4-22.

nios2-bsp-generate-files creates the BSP files. The nios2-bsp-generate-files utility
places all source files in your BSP directory. It copies some files from the Nios II EDS
installation directory. Others, such as system.h and Makefile, it generates
dynamically.

The SBT manages copied files slightly differently from generated files. If a copied file
(such as a HAL source file) already exists, the tools check the file timestamp against
the timestamp of the file in the Nios II EDS installation. The tools do not replace the
BSP file unless it differs from the distribution file. The tools normally overwrite
generated files, such as the BSP Makefile, system.h, and linker.x, unless you have
disabled generation of the individual file with the set_ignore file Tcl command or
the Enable File Generation tab in the BSP Editor. A comment at the top of each
generated file warns you not to edit it.

Nios Il Software Developer’s Handbook January 2014 Altera Corporation

Chapter 4: Nios Il Software Build Tools 4-21
Details of BSP Creation

“ e Forinformation about set_ignore_ file and other SBT Tcl commands, refer to
“Software Build Tools Tcl Commands” in the Nios II Software Build Tools Reference
chapter of the Nios II Software Developer’s Handbook.

I'=” Avoid modifying BSP files. Use BSP settings, or custom device drivers or software
packages, to customize your BSP.

Figure 4-1. Nios Il SBT BSP Creation

Hatrdwa;_rle Command Tl
system e line arguments scripts
(.sopcinfo)

Default Tcl script
(bsp-set-defaults.tcl) <¢—> nios2-bsp-create-settings

\/

BSP settings file
(-bsp)

P nios2-bsp-generate-files

'

BSP files

make

:

BSP library file

(-a)

w%‘ Nothing prevents you from modifying a BSP generated file. However, after you do so,
it becomes difficult to update your BSP to match changes in your hardware system. If
you regenerate your BSP, your previous changes to the generated file are destroyed.

“ e Forinformation about regenerating your BSP, refer to “Revising Your BSP” on

page 4-30.

January 2014 Altera Corporation Nios Il Software Developer’s Handbook

http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf

4-22 Chapter 4: Nios Il Software Build Tools
Details of BSP Creation

BSP Settings File Creation

Each BSP has an associated settings file that saves the values of all BSP settings. The
BSP settings file is in extensible markup language (XML) format and has a .bsp
extension by convention. When you create or update your BSP, the Nios II SBT writes
the value of all settings to the settings file.

Figure 4-1 on page 4-21 shows that the default Tcl script and
nios2-bsp-generate-files both use the .sopcinfo file. The BSP settings file does not
need to duplicate system information (such as base addresses of devices), because the
nios2-bsp-generate-files utility has access to the .sopcinfo file.

Figure 4-2 shows how the Nios II SBT interacts with the BSP settings file. The
nios2-bsp-create-settings utility creates a new BSP settings file. The
nios2-bsp-update-settings utility updates an existing BSP settings file. The
nios2-bsp-query-settings utility reports the setting values in an existing BSP settings
file. The nios2-bsp-generate-files utility generates a BSP from the BSP settings file.

Figure 4-2. BSP Settings File and BSP Utilities

nios2-bsp-create-settings

\/

BSP settings file
(-bsp)

nios2-bsp-update-settings <@

\/ \/

nios2-bsp-query-settings nios2-bsp-generate-files

Generated and Copied Files

To understand how to build and modify Nios II C/C++ projects, it is important to
understand the difference between copied and generated files.

A copied file is installed with the Nios II EDS, and copied to your BSP directory when
you create your BSP. It does not replace the BSP file unless it differs from the
distribution file.

A generated file is dynamically created by the nios2-bsp-generate-files utility.
Generated files reside in the top-level BSP directory. BSP files are normally written
every time nios2-bsp-generate-files runs.

You can disable generation of any BSP file in the BSP Editor, or on the command line
with the set_ignore_file Tcl command. Otherwise, if you modify a BSP file, it is
destroyed when you regenerate the BSP.

Nios Il Software Developer’s Handbook January 2014 Altera Corporation

Chapter 4: Nios Il Software Build Tools 4-23
Details of BSP Creation

HAL BSP Files and Folders

The Nios Il SBT creates the HAL BSP directory in the location you specify. Figure 4-3
shows a BSP directory after the SBT creates a BSP and generates BSP files. The SBT
places generated files in the top-level BSP directory, and copied files in the HAL and
drivers directories.

Figure 4-3. HAL BSP After Generating Files

my_hal_bsp

settings.bsp

summary.html

Makefile

public.mk

mem.init.mk

system.h

alt_sys_init.c

linker.h

linker.x

memory.gdb

HAL

src (*.c, *.S files)

AN

inc (*.h files)

e S S

drivers

src (*.c, *.S files)

inc (*.h files)

Ui

January 2014 Altera Corporation Nios Il Software Developer’s Handbook

4-24

Chapter 4: Nios Il Software Build Tools
Details of BSP Creation

Table 4-7 details all the generated BSP files shown in Figure 4-3.

Table 4-7. Generated BSP Files

File Name

Function

settings.bsp

Contains all BSP settings. This file is coded in XML.

On the command line, settings.bsp is created by the nios2-bhsp-create-settings command, and
optionally updated by the nios2-bsp-update-settings command. The nios2-bsp-query-settings
command is available to parse information from the settings file for your scripts. The
settings.bsp file is an input to nios2-bsp-generate-files.

The Nios Il SBT for Eclipse provides equivalent functionality.

summary.html

Provides summary documentation of the BSP. You can view summary.html with a hypertext
viewer or browser, such as Internet Explorer or Firefox. If you change the settings.bsp file, the
SBT updates the summary.html file the next time you regenerate the BSP.

Used to build the BSP. The targets you use most often are a11 and clean. The al1 target (the

Makefile default) builds the libhal_bsp.a library file. The clean target removes all files created by a
make of the a1l target.
A makefile fragment that provides public information about the BSP. The file is designed to be
public.mk included in other makefiles that use the BSP, such as application makefiles. The BSP Makefile
also includes public.mk.
A makefile fragment that defines targets and rules to convert an application executable file to
memory initialization files (.dat, .hex, and .flash) for HDL simulation, flash programming, and
mem_init.mk initializable FPGA memories. The mem_init.mk file is designed to be included by an application
makefile. For usage, refer to any application makefile generated when you run the SBT.
For more information, refer to “Creating Memory Initialization Files” on page 4-11.
alt_sys_init.c Used to initialize device driver instances and software packages. (7)
Contains the C declarations describing the BSP memory map and other system information
system.h L
needed by software applications. (7)
linker.h Contains information about the linker memory layout. system.h includes the linker.h file.
linker.x Contains a linker script for the GNU linker.
memory.gdb Contains memory region declarations for the GNU debugger.

obj Directory

Contains the object code files for all source files in the BSP. The hierarchy of the BSP source
files is preserved in the obj directory.

libhal_bsp.a Library

Contains the HAL BSP library. All object files are combined in the library file.
The HAL BSP library file is always named libhal_hsp.a.

Note to Table 4-7:

Developer’s Handbook.

(1) For further details about this file, refer to the Developing Programs Using the Hardware Abstraction Layer chapter of the Nios Il Software

Nios Il Software Developer’s Handbook January 2014 Altera Corporation

http://www.altera.com/literature/hb/nios2/n2sw_nii52004.pdf

Chapter 4: Nios Il Software Build Tools 4-25
Details of BSP Creation

Table 4-8 details all the copied BSP files shown in Figure 4-3.

Table 4-8. Copied BSP Files

File Name Function

Contains HAL source code files. These are all copied files. The sr¢ directory contains the
C-language and assembly-language source files. The inc directory contains the header files.

The crt0.S source file, containing HAL C run-time startup code, resides in the HAL/sre
directory.

Contains all driver source code. The files in this directory are all copied files. The drivers
directory has src¢ and inc subdirectories like the HAL directory.

HAL Directory

drivers Directory

January 2014 Altera Corporation Nios Il Software Developer’s Handbook

4-26

Chapter 4: Nios Il Software Build Tools
Details of BSP Creation

Figure 4-4 shows a BSP directory after executing make.

Figure 4-4. HAL BSP After Build

my_hal_bsp

settings.bsp

summary.html

Makefile

public.mk

mem.init.mk

system.h

alt_sys_init.c

linker.h

linker.x

memory.gdb

HAL

src (*.c,*.S files)

inc (*.h files)

i

drivers

src (*.c,*.S files)

) e e e e e e e e

|

inc (~.h files)

U

HAL

src (.o files)

drivers

src (.o files)

libhal_bsp.a

Nios Il Software Developer’s Handbook

January 2014

Altera Corporation

Chapter 4: Nios Il Software Build Tools 4-27

Tcl Scripts for BSP Settings

Linker Map Validation

When a BSP is generated, the SBT validates the linker region and section mappings, to
ensure that they are valid for a HAL project. The tools display an error in each of the
following cases:

m The .entry section maps to a nonexistent region.
m The .entry section maps to a memory region that is less than 32 bytes in length.

m The .entry section maps to a memory region that does not start on the reset vector
base address.

m The .exceptions section maps to a nonexistent region.

m The .exceptions section maps to a memory region that does not start on the
exception vector base address.

m The .entry section and .exceptions section map to the same device, and the
memory region associated with the .exceptions section precedes the memory
region associated with the .entry section.

m The .entry section and .exceptions section map to the same device, and the base
address of the memory region associated with the .exceptions section is less than
32 bytes above the base address of the memory region associated with the .entry
section.

Tcl Scripts for BSP Settings

In many cases, you can fully specify your Nios II BSP with the Nios II SBT settings
and defaults. However, in some cases you might need to create some simple Tcl
scripts to customize your BSP.

You control the characteristics of your BSP by manipulating BSP settings, using Tcl
commands. The most powerful way of using Tcl commands is by combining them in
Tel scripts.

Tcl scripting gives you maximum control over the contents of your BSP. One
advantage of Tcl scripts over command-line arguments is that a Tcl script can obtain
information from the hardware system or pre-existing BSP settings, and then use it
later in script execution.

For descriptions of the Tcl commands used to manipulate BSPs, refer to “Software
Build Tools Tel Commands” in the Nios II Software Build Tools Reference chapter of the
Nios II Software Developer’s Handbook.

Calling a Custom BSP Tcl Script

From the Nios II Command Shell, you can call a custom BSP Tcl script with any of the
following commands:

nios2-bsp --script custom bsp.tcl
nios2-bsp-create-settings --script custom bsp.tcl
nios2-bsp-query-settings --script custom bsp.tcl

nios2-bsp-update-settings --script custom bsp.tcl

January 2014 Altera Corporation Nios Il Software Developer’s Handbook

http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf

4-28

Chapter 4: Nios Il Software Build Tools
Tcl Scripts for BSP Settings

=5

=
=

5

In the Nios II BSP editor, you can execute a Tcl script when generating a BSP, through
the New BSP Settings File dialog box.

For information about using Tcl scripts in the SBT for Eclipse, refer to “Using the BSP
Editor” in the Getting Started with the Graphical User Interface chapter of the Nios II
Software Developer’s Handbook.

For an example of custom Tcl script usage, refer to “Creating Memory Initialization
Files” on page 4-11.
Any settings you specify in your script override the BSP default values. For further

information about BSP defaults, refer to “Specifying BSP Defaults” on page 4-35.

When you update an existing BSP, you must include any scripts originally used to
create it. Otherwise, your project’s settings revert to the defaults.

When you use a custom Tcl script to create your BSP, you must include the script in
the set of files archived in your version control system. For further information, refer
to “Using Version Control” on page 4-9.

The Tcl script in Example 4-8 is a very simple example that sets stdio to a device with
the name my uart.

Example 4-8. Simple Tcl script

set default_stdio my uart

set setting hal.stdin $default stdio
set setting hal.stdout $default stdio
set_setting hal.stderr $default_ stdio

Example 4-9 illustrates how you might use more powerful scripting capabilities to
customize a BSP based on the contents of the hardware system.

The Nios II SBT uses slave descriptors to refer to components connected to the Nios II
processor. A slave descriptor is the unique name of a hardware component’s slave
port.

If a component has only one slave port connected to the Nios II processor, the slave
descriptor is the same as the name of the component (for example, onchip mem 0).If a
component has multiple slave ports connecting the Nios II to multiple resources in the
component, the slave descriptor is the name of the component followed by an
underscore and the slave port name (for example, onchip mem 0 sl).

For further information about slave descriptors, refer to the Developing Device Drivers
for the Hardware Abstraction Layer chapter of the Nios II Software Developer’s Handbook.

The script shown in Example 4-9 is similar to bsp-stdio-utils.tcl, which examines the
hardware system and determines what device to use for stdio. For details, refer to
“Specifying BSP Defaults” on page 4-35.

Nios Il Software Developer’s Handbook January 2014 Altera Corporation

http://www.altera.com/literature/hb/nios2/n2sw_nii52017.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52005.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52005.pdf

Chapter 4: Nios Il Software Build Tools 4-29
Tcl Scripts for BSP Settings

Example 4-9. Tcl Script to Examine Hardware and Choose Settings

Select a device connected to the processor as the default STDIO devi
ce.

It returns the slave descriptor of the selected device.

It gives first preference to devices with stdio in the name.
It gives second preference to JTAG UARTs.

If no JTAG UARTs are found, it uses the last character device.
If no character devices are found, it returns "none".

FH FH o HH*

Procedure that does all the work of determining the stdio device
proc choose default stdio {} {

set last_stdio "none"

set first jtag_uart "none"

Get all slaves attached to the processor.
set slave_descs [get_slave_descs]

foreach slave desc S$slave descs
Lookup module class name for slave descriptor.
set module name [get module name $slave desc]
set module class name [get module class name $module_ name]

If the module name contains "stdio", we choose it
and return immediately.
if { [regexp .*stdio.* $module name] } {

return $slave desc

}
Assume it is a JTAG UART if the module class name contains
the string "jtag uart". In that case, return the first one
found.
if { [regexp .*jtag uart.* S$module class name] } {

if {$first jtag uart == "none"} {

set first jtag_uart S$slave_desc

}

}

Track last character device in case no JTAG UARTs found.
if { [is_char device $slave desc] } {

set last stdio $slave desc
1

}

if {$first jtag uart != "none"} ({
return $first jtag uart
}

return $last_stdio

}

Call routine to determine stdio
set default stdio [choose default stdio]

Set stdio settings to use results of above call.
set _setting hal.stdin s$default stdio

set setting hal.stdout $default stdio

set_setting hal.stderr s$default_stdio

January 2014 Altera Corporation Nios Il Software Developer’s Handbook

4-30 Chapter 4: Nios Il Software Build Tools
Revising Your BSP

Revising Your BSP

Your BSP is customized to your hardware design and your software requirements. If

your hardware design or software requirements change, you usually need to revise
your BSP.

Every BSP is based on a Nios II processor in a hardware system. The BSP settings file
does not duplicate information available in the .sopcinfo file, but it does contain
system-dependent settings that reference system information. Because of these
system-dependent settings, a BSP settings file can become inconsistent with its system
if the system changes.

You can revise a BSP at several levels. This section describes each level, and provides
guidance about when to use it.

Rebuilding Your BSP

Rebuilding a BSP is the most superficial way to revise a BSP.

What Happens

Rebuilding the BSP simply recreates all BSP object files and the .a library file. BSP
settings, source files, and compiler options are unchanged.

How to Rebuild Your BSP
In the Nios II SBT for Eclipse, right-click the BSP project and click Build.

On the command line, change to the BSP directory and type make.

Regenerating Your BSP

Regenerating the BSP refreshes the BSP source files without updating the BSP
settings.

What Happens
Regenerating a BSP has the following effects:

m Reads the .sopcinfo file for basic system parameters such as module base
addresses and clock frequencies.

m Retrieves the current system identification (ID) from the .sopcinfo file. Ensures
that the correct system ID is inserted in the .elf file the next time the BSP is built.

m Adjusts the default memory map to correspond to changes in memory sizes. If you
are using a custom memory map, it is untouched.

m Retains all other existing settings in the BSP settings file.

L=~ Except for adjusting the default memory map, the SBT does not ensure that
the settings are consistent with the hardware design in the .sopcinfo file.

Nios Il Software Developer’s Handbook January 2014 Altera Corporation

Chapter 4: Nios Il Software Build Tools 4-31

Revising Your BSP

m Ensures that the correct set of BSP files is present, as follows:

Copies all required source files to the BSP directory tree. Copied BSP files are
listed in Table 4-8 on page 4-25.

If a copied file (such as a HAL source file) already exists, the SBT checks the file
timestamp against the timestamp of the file in the Nios II EDS installation. The
tools do not replace the BSP file unless it differs from the distribution file.

Recreates all generated files. Generated BSP files are listed in Table 4-7 on
page 4-24.

= You can disable generation of any BSP file in the BSP Editor, or on the

command line with the set_ignore_file Tcl command. Otherwise, changes
you make to a BSP file are lost when you regenerate the BSP. Whenever
possible, use BSP settings, or custom device drivers or software packages,
to customize your BSP.

Removes any files that are not required, for example, source files for drivers
that are no longer in use.

When to Regenerate Your BSP

Regenerating your BSP is required (and sufficient) in the following circumstances:

® You change your hardware design, but all BSP system-dependent settings remain
consistent with the new .sopcinfo file. The following are examples of system
changes that do not affect BSP system-dependent settings:

I

January 2014 Altera Corporation

Changing a component’s base address

With the internal interrupt controller (IIC), adding or removing hardware
interrupts

With the IIC, changing a hardware interrupt number

Changing a clock frequency

Changing a simple processor option, such as cache size or core type
Changing a simple component option, other than memory size.
Adding a bridge

Adding a new component

Removing or renaming a component, other than a memory component, the
stdio device, or the system timer device

Changing the size of a memory component when you are using the default
memory map

=

&~ Unless you are sure that your modified hardware design remains consistent

with your BSP settings, update your BSP as described in “Updating Your
BSP” on page 4-32.

Nios Il Software Developer’s Handbook

4-32

Chapter 4: Nios Il Software Build Tools
Revising Your BSP

=

=

B You want to eliminate any customized source files and revert to the distributed
BSP code.

L=~ To revert to the distributed BSP code, you must ensure that you have not
disabled generation on any BSP files.

B You have installed a new version of the Nios II EDS, and you want the updated
BSP software implementations.

m When you attempt to rebuild your project, an error message indicates that the BSP
must be updated.

®m You have updated or recreated the BSP settings file.

How to Regenerate Your BSP

You can regenerate your BSP in the Nios II SBT for Eclipse, or with SBT commands at
the command line.

Regenerating Your BSP in Eclipse

In the Nios II SBT for Eclipse, right-click the BSP project, point to Nios II, and click
Generate BSP.

For information about generating a BSP with the SBT for Eclipse, refer to the Gefting
Started with the Graphical User Interface chapter of the Nios 1I Software Developer’s
Handbook.

Regenerating Your BSP from the Command Line

From the command line, use the nios2-bsp-generate-files command.

For information about the nios2-bsp-generate-files command, refer to the Nios II
Software Build Tools Reference chapter of the Nios II Software Developer’s Handbook.

Updating Your BSP

When you update a BSP, you recreate the BSP settings file based on the current
hardware definition and previous BSP settings.

You must always regenerate your BSP after updating the BSP settings file.

What Happens
Updating a BSP has the following effects:

m System-dependent settings are derived from the original BSP settings file, but
adjusted to correspond with any changes in the hardware system.

m Non-system-dependent BSP settings persist from the original BSP settings file.

Also refer to “Regenerating Your BSP” on page 4-30 for actions taken when you
regenerate the BSP after updating it.

Nios Il Software Developer’s Handbook January 2014 Altera Corporation

http://www.altera.com/literature/hb/nios2/n2sw_nii52017.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52017.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf

Chapter 4: Nios Il Software Build Tools 4-33
Revising Your BSP

When to Update Your BSP

Updating your BSP is necessary in the following circumstances:
m A change to your BSP settings is required.

m Changes to your .sopcinfo file make it inconsistent with your BSP. The following
are examples of system changes that affect BSP system-dependent settings:

m Renaming the processor

m Renaming or removing a memory, the stdio device, or the system timer device
m Changing the size of a memory component when using a custom memory map
m Changing the processor reset or exception slave port or offset

m Adding or removing an external interrupt controller (EIC)

m Changing the parameters of an EIC

m When you attempt to rebuild your project, an error message indicates that you
must update the BSP.

How to Update Your BSP

You can update your BSP at the command line. You have the option to use a Tcl script
to control your BSP settings.

From the command line, use the nios2-bsp-update-settings command. You can use
the --script option to define the BSP with a Tcl script.
“ e For details about the nios2-bsp-update-settings command, refer to the Nios IT Software
Build Tools Reference chapter of the Nios II Software Developer’s Handbook.

nios2-bsp-update-settings does not reapply default settings unless you explicitly call
the top-level default Tcl script with the --script option.
“ e For information about using the default Tcl script, refer to “Specifying BSP Defaults”
on page 4-35.

Alternatively, you can update your BSP with the nios2-bsp script. nios2-bsp
determines that your BSP already exists, and uses the nios2-bsp-update-settings
command to update the BSP settings file.

The nios2-bsp script executes the default Tcl script every time it runs, overwriting
previous default settings. If you want to preserve all settings, including the default
settings, use the DONT CHANGE keyword, described in “Top Level Tcl Script for BSP
Defaults” on page 4-36. Alternatively, you can provide nios2-bsp with command-line
options or Tcl scripts to override the default settings.
“ e For information about using the nios2-bsp script, refer to the Nios II Software Build
Tools Reference chapter of the Nios II Software Developer’s Handbook.

Recreating Your BSP

When you recreate your BSP, you start over as if you were creating a new BSP.

January 2014 Altera Corporation Nios Il Software Developer’s Handbook

http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf

4-34

Chapter 4: Nios Il Software Build Tools
Revising Your BSP

After you recreate your BSP, you must always regenerate it.

What Happens
Recreating a BSP has the following effects:

m System-dependent settings are created based on the current hardware system.

m Non-system-dependent settings can be selected by the default Tcl script, by values
you specify, or both.

Also refer to “Regenerating Your BSP” on page 4-30 for actions taken when you
generate the BSP after recreating it.

When to Recreate Your BSP

If you are working exclusively in the Nios II SBT for Eclipse, and you modify the
underlying hardware design, the best practice is to create a new BSP. Creating a BSP is
very easy with the SBT for Eclipse. Manually correcting a large number of interrelated
settings, on the other hand, can be difficult.

How to Recreate Your BSP

You can recreate your BSP in the Nios II SBT for Eclipse, or using the SBT at the
command line. Regardless which method you choose, you can use Tcl scripts to
control and reproduce your BSP settings. This section describes the options for
recreating BSPs.

Using Tcl Scripts When Recreating Your BSP

A Tcl script automates selection of BSP settings. This automation ensures that you can
reliably update or recreate your BSP with its original settings. Except when creating
very simple BSPs, Altera recommends specifying all BSP settings with a Tcl script.

To use Tcl scripts most effectively, it is best to create a Tcl script at the time you initially
create the BSP. However, the BSP Editor enables you to export a Tcl script from an
existing BSP.

For details about exporting Tcl scripts, refer to “Using the BSP Editor” in the Getting
Started with the Graphical User Interface chapter of the Nios II Software Developer’s
Handbook.

By recreating the BSP settings file with a Tcl script that specifies all BSP settings, you
can reproduce the original BSP while ensuring that system-dependent settings are
adjusted correctly based on any changes in the hardware system.

For information about Tcl scripting with the SBT, refer to “Tcl Scripts for BSP Settings”
on page 4-27.

Recreating Your BSP in Eclipse

The process for recreating a BSP is the same as the process for creating a new BSP. The
Nios II SBT for Eclipse provides an option to import a Tcl script when creating a BSP.

Nios Il Software Developer’s Handbook January 2014 Altera Corporation

http://www.altera.com/literature/hb/nios2/n2sw_nii52017.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52017.pdf

Chapter 4: Nios Il Software Build Tools 4-35

Specifying BSP Defaults

For details, refer to “Getting Started with Eclipse” and “Using the BSP Editor” in the
Getting Started with the Graphical User Interface chapter of the Nios II Software
Developer’s Handbook.

Recreating Your BSP at the Gommand Line

Recreate your BSP using the nios2-bsp-create-settings command. You can use the
--script option to define the BSP with a Tcl script.

The nios2-bsp-create-settings command does not apply default settings to your BSP.
However, you can use the - -script command-line option to run the default Tcl script.
For information about the default Tcl script, refer to “Specifying BSP Defaults”.

For information about using the nios2-bsp-create-settings command, refer to the
Nios II Software Build Tools Reference chapter of the Nios 1I Software Developer’s
Handbook.

Specifying BSP Defaults

The Nios Il SBT sets BSP defaults using a set of Tcl scripts. Table 4-9 lists the
components of the BSP default Tcl scripts included in the Nios II SBT. These scripts
specify default BSP settings. The scripts are located in the following directory:

<Nios II EDS install path>/sdk2/bin

Table 4-9. Default Tcl Script Components

Script Level Summary
bsp-set-defaults.tcl Top-level | Sets system-dependent settings to default values.
bsp-call-proc.tcl Top-level | Galls a specified procedure in one of the helper scripts.
bsp-stdio-utils.tcl Helper Specifies stdio device settings.
bsp-timer-utils.tcl Helper Specifies system timer device setting.
bsp-linker-utils. tcl Helper ﬁrpl)lfgf;ecsrir;:mory regions and section mappings for
bsp-bootloader-utils.tcl Helper Specifies boot loader-related settings.

For more information about Tcl scripting with the SBT, refer to “Tcl Scripts for BSP
Settings” on page 4-27.

The Nios I SBT uses the default Tcl scripts to specify default values for
system-dependent settings. System-dependent settings are BSP settings that reference
system information in the .sopcinfo file.

The SBT executes the default Tcl script before any user-specified Tcl scripts. As a
result, user input overrides settings made by the default Tcl script.

You can pass command-line options to the default Tcl script to override the choices it
makes or to prevent it from making changes to settings. For details, refer to “Top
Level Tcl Script for BSP Defaults”.

January 2014 Altera Corporation Nios Il Software Developer’s Handbook

http://www.altera.com/literature/hb/nios2/n2sw_nii52017.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf

4-36

Chapter 4: Nios Il Software Build Tools
Specifying BSP Defaults

The default Tcl script makes the following choices for you based on your hardware
system:

m stdio character device

m System timer device

m Default linker memory regions
m Default linker sections mapping
m Default boot loader settings

The default Tcl scripts use slave descriptors to assign devices.

Top Level Tcl Script for BSP Defaults

The top level Tcl script for setting BSP defaults is bsp-set-defaults.tcl. This script
specifies BSP system-dependent settings, which depend on the hardware system. The
nios2-bsp-create-settings and nios2-bsp-update-settings utilities do not call the
default Tcl script when creating or updating a BSP settings file. The --script option
must be used to specify bsp-set-defaults.tcl explicitly. Both the Nios II SBT for Eclipse
and the nios2-bsp script call the default Tcl script by invoking either
nios2-bsp-create-settings or nios2-bsp-update-settings with the --script
bsp-set-defaults.tcl option.

The default Tcl script consists of a top-level Tcl script named bsp-set-defaults.tcl plus
the helper Tcl scripts listed in Table 4-9. The helper Tcl scripts do the real work of
examining the .sopcinfo file and choosing appropriate defaults.

The bsp-set-defaults.tcl script sets the following defaults:
m stdio character device (bsp-stdio-utils.tcl)

m System timer device (bsp-timer-utils.tcl)

m Default linker memory regions (bsp-linker-utils.tcl)

m Default linker sections mapping (bsp-linker-utils.tcl)
m Default boot loader settings (bsp-bootloader-utils.tcl)

You run the default Tcl script on the nios2-bsp-create-settings,
nios2-bsp-query-settings, or nios2-bsp-update-settings command line, by using the
--script argument. It has the following usage:

bsp-set-defaults.tcl [<argument name> <argument values]*

Nios Il Software Developer’s Handbook January 2014 Altera Corporation

Chapter 4: Nios Il Software Build Tools 4-37
Specifying BSP Defaults

Table 4-10 lists default Tcl script arguments in detail. All arguments are optional. If
present, each argument must be in the form of a name and argument value, separated
by white space. All argument values are strings. For any argument not specified, the
corresponding helper script chooses a suitable default value. In every case, if the
argument value is DONT_CHANGE, the default Tcl scripts leave the setting unchanged.
The DONT CHANGE value allows fine-grained control of what settings the default Tcl
script changes and is useful when updating an existing BSP.

Table 4-10. Default Tcl Script Command-Line Options

Argument Name Argument Value
Slave descriptor of default stdio device (stdin,
default_stdio stdout, stderr). Set to none if no stdio device
desired.

Slave descriptor of default system timer device. Set to

faul i . . . \
default_sys_timer none if no system timer device desired.

Controls generation of memory regions By default,
bsp-linker-utils.tcl removes and regenerates all current
memory regions. Use the DONT CHANGE keyword to
suppress this behavior.

Slave descriptor of the memory device to which the
default sections are mapped. This argument has no
effect if default memory regions ==

DONT CHANGE.

default memory regions

default sections mapping

enable bootloader Boolean: 1 if a boot loader is present; 0 otherwise.

Specifying the Default stdio Device

The bsp-stdio-utils.tcl script provides procedures to choose a default stdio slave
descriptor and to set the hal.stdin, hal.stdout, and hal.stderr BSP settings to that
value.

For more information about these settings, refer to the Nios II Software Build Tools
Reference chapter of the Nios II Software Developer’s Handbook.

The script searches the .sopcinfo file for a slave descriptor with the string stdio in its
name. If bsp-stdio-utils.tcl finds any such slave descriptors, it chooses the first as the
default stdio device. If the script finds no such slave descriptor, it looks for a slave
descriptor with the string jtag uart in its component class name. If it finds any such
slave descriptors, it chooses the first as the default stdio device. If the script finds no
slave descriptors fitting either description, it chooses the last character device slave
descriptor connected to the Nios II processor. If bsp-stdio-utils.tcl does not find any
character devices, there is no stdio device.

Specifying the Default System Timer

January 2014

The bsp-timer-utils.tcl script provides procedures to choose a default system timer
slave descriptor and to set the hal.sys_clk_timer BSP setting to that value.

For more information about this setting, refer to the Nios II Software Build Tools
Reference chapter of the Nios II Software Developer’s Handbook.

Altera Corporation Nios Il Software Developer’s Handbook

http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf

4-38 Chapter 4: Nios Il Software Build Tools
Specifying BSP Defaults

The script searches the .sopcinfo file for a timer component to use as the default
system timer. To be an appropriate system timer, the component must have the
following characteristics:

m It must be a timer, that is, is_timer device must return true.
m It must have a slave port connected to the Nios II processor.

When the script finds an appropriate system timer component, it sets
hal.sys_clk timer to the timer slave port descriptor. The script prefers a slave port
whose descriptor contains the string sys_c1k, if one exists. If no appropriate system
timer component is found, the script sets hal.sys clk_timer to none.

Specifying the Default Memory Map

The bsp-linker-utils.tcl script provides procedures to add the default linker script
memory regions and map the default linker script sections to a default region. The
bsp-linker-utils.tcl script uses the add_memory regionand add_section mapping BSP
Tel commands.
“ e For more information about these commands, refer to the Nios IT Software Build Tools
Reference chapter of the Nios II Software Developer’s Handbook.

The script chooses the largest volatile memory region as the default memory region. If
there is no volatile memory region, bsp-linker-utils.tcl chooses the largest
non-volatile memory region. The script assigns the .text, .rodata, .rwdata, .bss,
.heap, and .stack section mappings to this default memory region. The script also sets
the hal.linker.exception stack memory region BSP setting to the default memory
region. The setting is available in case the separate exception stack option is enabled
(this setting is disabled by default).

“ e For more information about this setting, refer to the Nios IT Software Build Tools

Reference chapter of the Nios II Software Developer’s Handbook.

Specifying Default Bootloader Parameters

The bsp-bootloader-utils.tcl script provides procedures to specify the following BSP
boolean settings:

B hal.linker.allow code at reset
B hal.linker.enable alt load copy rodata
B hal.linker.enable alt load copy rwdata

B hal.linker.enable alt load copy exceptions
“ e For more information about these settings, refer to the Nios II Software Build Tools
Reference chapter of the Nios II Software Developer’s Handbook.

The script examines the .text section mapping and the Nios II reset slave port. If

the .text section is mapped to the same memory as the Nios Il reset slave port and the
reset slave port is a flash memory device, the script assumes that a boot loader is
being used. You can override this behavior by passing the enable bootloader option
to the default Tcl script.

Nios Il Software Developer’s Handbook January 2014 Altera Corporation

http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf

Chapter 4: Nios Il Software Build Tools 4-39
Device Drivers and Software Packages

Table 4-11 shows how the bsp-bootloader-utils.tcl script specifies the value of boot
loader-dependent settings. If a boot loader is enabled, the assumption is that the boot
loader is located at the reset address and handles the copying of sections on reset. If
there is no boot loader, the BSP might need to provide code to handle these functions.
You can use the alt_load() function to implement a boot loader.

Tahle 4-11. Boot Loader-Dependent Settings

Value When
Setting name (7) Boot Loader Value When Boot Loader Disahled
Enabled
hal.linker.allow code at reset 0 1
1 if .rodata memory different
hal.linker.enable alt load copy rodata 0 than .text memory and .rodata
memory is volatile; 0 otherwise
hal.linker.enable alt load co rwdata 0 1if .rudata memory different
: : 8-t _toac_copy than .text memory; 0 otherwise
1if .exceptions memory different
hal.linker.enable alt load copy exceptions 0 than .text memory and .exceptions
memory is volatile; 0 otherwise

Notes to Table 4-11:

(1) For further information about these settings, refer to the Nios I/ Software Build Tools Reference chapter of the Nios Il Software Developer’s
Handbook.

Using Individual Default Tcl Procedures

The default Tcl script consists of the top-level bsp-call-proc.tcl script plus the helper
scripts listed in Table 4-9 on page 4-35. The procedure call Tcl script allows you to call
a specific procedure in the helper scripts, if you want to invoke some of the default Tcl
functionality without running the entire default Tcl script.

The procedure call Tcl script has the following usage:

bsp-call-proc.tcl <proc-name> [<argss>]*

bsp-call-proc.tcl calls the specified procedure with the specified (optional)
arguments. Refer to the default Tcl scripts to view the available functions and their
arguments. The bsp-call-proc.tcl script includes the same files as the
bsp-set-defaults.tcl script, so any function in those included files is available.

Device Drivers and Software Packages

January 2014

The Nios II SBT can incorporate device drivers and software packages supplied by
Altera, supplied by other third-party developers, or created by you.

For details about integrating device drivers and software packages with the
Nios II SBT, refer to the Developing Device Drivers for the Hardware Abstraction Layer
chapter of the Nios II Software Developer’s Handbook.

Altera Corporation Nios Il Software Developer’s Handbook

http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52005.pdf

4-40 Chapter 4: Nios Il Software Build Tools
Boot Configurations for Altera Embedded Software

Boot Configurations for Altera Embedded Software

The HAL and MicroC/OS-11 BSPs support several boot configurations. The default Tcl
script configures an appropriate boot configuration based on your hardware system
and other settings.
“ e For detailed information about the HAL boot loader process, refer to the Developing
Programs Using the Hardware Abstraction Layer chapter of the Nios II Software
Developer’s Handbook.

Table 4-12 shows the memory types that the default Tcl script recognizes when
making decisions about your boot configuration. The default Tcl script uses the
IsFlash and IsNonVolatileStorage properties to determine what kind of memory is
in the system.

The IsFlash property of the memory module (defined in the .sopcinfo file) indicates
whether the .sopcinfo file identifies the memory as a flash memory device. The
IsNonVolatileStorage property indicates whether the .sopcinfo file identifies the
memory as a non-volatile storage device. The contents of a non-volatile memory
device are fixed and always present.

[~ Some FPGA memories can be initialized when the FPGA is configured. They are not

considered non-volatile because the default Tcl script has no way to determine
whether they are actually initialized in a particular system.

Table 4-12. Memory Types

Memory Type Examples IsFlash IsNonVolatileStorage

Common flash interface (CFl), erasable

Flash programmable configurable serial true true
(EPCS) device
On-chip memory configured as ROM,

ROM HardCopy ROM false true
On-chip memory configured as RAM,

RAM HardCopy RAM, SDRAM, synchronous | false false
static RAM (SSRAM)

The following sections describe each supported build configuration in detail. The
alt load() facility is HAL code that optionally copies sections from the boot memory
to RAM. You can set an option to enable the boot copy. This option only adds the code
to your BSP if it needs to copy boot segments. The hal.enable alt load setting
enables alt_load () and there are settings for each of the three sections it can copy
(such as hal.enable_alt_load copy_rodata). Enabling alt load() also modifies the
memory layout specified in your linker script.

Boot from Flash Configuration

The reset address points to a boot loader in a flash memory. The boot loader initializes
the instruction cache, copies each memory section to its virtual memory address
(VMA), and then jumps to start.

Nios Il Software Developer’s Handbook January 2014 Altera Corporation

http://www.altera.com/literature/hb/nios2/n2sw_nii52004.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52004.pdf

Chapter 4: Nios Il Software Build Tools 4-41
Boot Configurations for Altera Embedded Software

This boot configuration has the following characteristics:
B alt load() not called
m No code at reset in executable file

The default Tcl script chooses this configuration when the memory associated with
the processor reset address is a flash memory and the .text section is mapped to a
different memory (for example, SDRAM).

Altera provides example boot loaders for CFI and EPCS memory in the Nios II EDS,
precompiled to Motorola S-record Files (.srec). You can use one of these example boot
loaders, or provide your own.

Boot from Monitor Configuration

The reset address points to a monitor in a nonvolatile ROM or initialized RAM. The
monitor initializes the instruction cache, downloads the application memory image
(for example, using a UART or Ethernet connection), and then jumps to the entry
point provided in the memory image.

This boot configuration has the following characteristics:
B alt load() not called
m No code at reset in executable file

The default Tcl script assumes no boot loader is in use, so it chooses this configuration
only if you enable it. To enable this configuration, pass the following argument to the
default Tcl script:

enable bootloader 1
If you are using the nios2-bsp script, call it as follows:

nios2-bsp hal my bsp --use bootloader 1+

Run from Initialized Memory Configuration

The reset address points to the beginning of the application in memory (no boot
loader). The reset memory must have its contents initialized before the processor
comes out of reset. The initialization might be implemented by using a non-volatile
reset memory (for example, flash, ROM, initialized FPGA RAM) or by an external
master (for example, another processor) that writes the reset memory. The HAL C
run-time startup code (crt0) initializes the instruction cache, uses alt_load() to copy
select sections to their VMAs, and then jumps to _start. For each associated section
(.rwdata, .rodata, .exceptions), boolean settings control this behavior. The default Tcl
scripts set these to default values as described in Table 4-11 on page 4-39.

alt load() must copy the .rwdata section (either to another RAM or to a reserved
area in the same RAM as the .text RAM) if .rwdata needs to be correct after multiple
resets.

This boot configuration has the following characteristics:
B alt load() called

m Code at reset in executable file

January 2014 Altera Corporation Nios Il Software Developer’s Handbook

Chapter 4: Nios Il Software Build Tools
Altera-Provided Embedded Development Tools

The default Tcl script chooses this configuration when the reset and .text memory are
the same.

In this boot configuration, when the processor core resets, by default the .rwdata
section is not reinitialized. Reinitialization would normally be done by a boot loader.
However, this configuration has no boot loader, because the software is running out of
memory that is assumed to be preinitialized before startup.

If your software has a . rwdata section that must be reinitialized at processor reset,
turn on the hal.linker.enable alt load copy rwdata setting in the BSP.

Run-time Configurable Reset Configuration

The reset address points to a memory that contains code that executes before the
normal reset code. When the processor comes out of reset, it executes code in the reset
memory that computes the desired reset address and then jumps to it. This boot
configuration allows a processor with a hard-wired reset address to appear to reset to
a programmable address.

This boot configuration has the following characteristics:
B alt load() might be called (depends on boot configuration)
m No code at reset in executable file

Because the processor reset address points to an additional memory, the algorithms
used by the default Tcl script to select the appropriate boot configuration might make
the wrong choice. The individual BSP settings specified by the default Tcl script need
to be explicitly controlled.

Altera-Provided Embedded Development Tools

This section lists the components of the Nios II SBT, and other development tools that
Altera provides for use with the SBT. This section does not describe detailed usage of
the tools, but refers you to the most appropriate documentation.

Nios Il Software Build Tool GUIs

The Nios II EDS provides the following SBT GUISs for software development:
m The Nios II SBT for Eclipse

m The Nios II BSP Editor

m The Nios II Flash Programmer

Each GUI is primarily a thin layer providing graphical control of the command-line
tools described in “The Nios II Command-Line Commands” on page 4—44.

Nios Il Software Developer’s Handbook January 2014 Altera Corporation

Chapter 4: Nios Il Software Build Tools
Altera-Provided Embedded Development Tools

4-43

Table 4-13 outlines the correlation between GUI features and the SBT command line.

Table 4-13. Summary of Nios Il GUI Tasks

Task Tool Feature Nios Il SBT Command Line
Creating an Nios Il Application and
example Nios Il Nios Il SBT for Eclipse | BSP from Template create-this-app script
program wizard
Crea.tmg. an Nios Il SBT for Eclipse N!os Il Application nios2-app-generate-makefile utility
application wizard

Creating a user

Nios Il SBT for Eclipse

Nios Il Library wizard

nios2-lib-generate-makefile utility

library

Nios Il SBT for Eclipse :’"07(" Boa.rd Sdupport m Simple:

ackage wizar = nios2-bsp script

Creating a BSP L m Detailed:

BSP Editor New BSP Setting File . . .

dialog box = nios2-bsp-create-settings utility
= hios2-bsp-generate-files utility
I\/Iod.n‘ylr.lg an Nios Il SBT for Eclipse Nios Il I'\ppllcatlon nios2-app-update-makefile utility
application Properties page
Modifying a user . . Nios Il Library e i . .
library Nios Il SBT for Eclipse Properties page nios2-lih-update-makefile utility
) Nios Il SBT for Eclipse Nios Il BSP Properties nios2-bhsp-update-settings utility

Updating a BSP page los2-h files util

BSP Editor — nios2-bsp-generate-files utility
Examining Nios Il SBT for Eclipse :)';g: Il BSP Properties | ’t I
properties of a BSP ' nios2-bsp-query-settings utility

BSP Editor —
Programming flash | Nios Il Flash .

— nios2-flash-programmer

memory Programmer
Importing a
command-line Nios Il SBT for Eclipse | Import dialog box —
project

The Nios Il SBT for Eclipse

The Nios II SBT for Eclipse is a configuration of the popular Eclipse development
environment, specially adapted to the Nios II family of embedded processors. The

Nios II SBT for Eclipse includes Nios II plugins for access to the Nios II SBT, enabling
you to create applications based on the Altera HAL, and debug them using the JTAG

debugger.

You can launch the Nios II SBT for Eclipse either of the following ways:

m Inthe Windows operating system, on the Start menu, point to Programs > Altera >

Nios II EDS <version>, and click Nios II <version> Software Build Tools for

Eclipse.

m From the Nios Il Command Shell, by typing eclipse-nios2.

For more information about the Nios II SBT for Eclipse, refer to the Getting Started with

the Graphical User Interface chapter of the Nios II Software Developer’s Handbook.

January 2014 Altera Corporation

Nios Il Software Developer’s Handbook

http://www.altera.com/literature/hb/nios2/n2sw_nii52017.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52017.pdf

4-44 Chapter 4: Nios Il Software Build Tools
Altera-Provided Embedded Development Tools

The Nios 1l BSP Editor

You can create or modify a Nios II BSP project with the Nios II BSP Editor, a
standalone GUI that also works with the Nios II SBT for Eclipse. You can launch the
BSP Editor either of the following ways:

m From the Nios II menu in the Nios II SBT for Eclipse
m From the Nios II Command Shell, by typing nios2-bsp-editor.

The Nios II BSP Editor enables you to edit settings, linker regions, and section
mappings, and to select software packages and device drivers.

The capabilities of the Nios II BSP Editor constitute a large subset of the capabilities of
the nios2-bsp-create-settings, nios2-bsp-update-settings, and
nios2-bsp-generate-files utilities. Any project created in the BSP Editor can also be
created using the command-line utilities.

“% e For more information about the BSP Editor, refer to “Using the BSP Editor” in the

Getting Started with the Graphical User Interface chapter of the Nios II Software
Developer’s Handbook.

The Nios Il Flash Programmer

The Nios II flash programmer allows you to program flash memory devices on a
target board. The flash programmer supports programming flash on any board,
including Altera development boards and your own custom boards. The flash
programmer facilitates programming flash for the following purposes:

m Executable code and data

m Bootstrap code to copy code from flash to RAM, and then run from RAM
m HAL file subsystems

m FPGA hardware configuration data

You can launch the flash programmer either of the following ways:

m From the Nios II menu in the Nios II SBT for Eclipse

m From the Nios Il Command Shell, by typing;:

nios2-flash-programmer-generate+

The Nios Il Command Shell

The Nios II Command Shell is a bash command-line environment initialized with the
correct settings to run Nios II command-line tools. The Nios II EDS includes two
versions of the Nios Il Command Shell, for the two supported GCC toolchain
versions, described in “GNU Compiler Tool Chain”.
“ e Forinformation about launching the Nios Il Command Shell, refer to the Getting
Started from the Command Line chapter of the Nios 1I Software Developer’s Handbook.

The Nios Il GCommand-Line Commands

This section describes the Altera Nios II command-line tools. You can run these tools
from the Nios II Command Shell.

Nios Il Software Developer’s Handbook January 2014 Altera Corporation

http://www.altera.com/literature/hb/nios2/n2sw_nii52017.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52014.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52014.pdf

Chapter 4: Nios Il Software Build Tools 4-45
Altera-Provided Embedded Development Tools

Each tool provides its own documentation in the form of help accessible from the
command line. To view the help, open the Nios II Command Shell, and type the
following command:

<name of tool> --help*

GNU Compiler Tool Chain

The Nios II compiler tool chain is based on the standard GNU GCC compiler,
assembler, linker, and make facilities. Altera provides and supports the standard
GNU compiler tool chain for the Nios II processor.

The Nios II EDS includes version GCC 4.7.3 of the GCC toolchain.

For detailed information about installing the Altera Complete Design Suite, refer to
the Altera Software Installation and Licensing Manual.

GNU tools for the Nios II processor are generally named nios2-elf-<tool name>. The
following list shows some examples:

B nios2-elf-gcc

® nios2-elf-as

®m nios2-elf-1d

® nios2-elf-objdump

B nios2-elf-size

The exception is the make utility, which is simply named make.

The Nios II GNU tools reside in the following location:

m <Nios Il EDS install path>/bin/gnu directory

Refer to the following additional sources of information:

m For information about managing GCC toolchains in the SBT for Eclipse—
“Managing Toolchains in Eclipse” in the Getting Started with the Graphical User
Interface chapter of the Nios II Software Developer’s Handbook

m For information about selecting the toolchain on the command line—the
Getting Started from the Command Line chapter of the Nios II Software Developer’s
Handbook

m For a comprehensive list of Nios II GNU tools—the GNU HTML
documentation, available at the Nios Il Embedded Design Suite Support page
of the Altera website

m For further information about GNU from the Free Software Foundation
website (www.gnu.org).

Nios Il Software Build Tools

The Nios II SBT utilities and scripts provide the functionality underlying the
Nios II SBT for Eclipse. You can create, modify, and build Nios II programs with
commands typed at a command line or embedded in a script.

January 2014 Altera Corporation Nios Il Software Developer’s Handbook

http://www.altera.com/literature/manual/quartus_install.pdf
http://www.altera.com/literature/manual/quartus_install.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52017.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52017.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52014.pdf
http://www.altera.com/support/ip/processors/nios2/ips-nios2_support.html
www.gnu.org

Chapter 4: Nios Il Software Build Tools
Altera-Provided Embedded Development Tools

Table 4-14 summarizes the command-line utilities and scripts included in the
Nios II SBT. You can call these utilities and scripts on the command line or from the
scripting language of your choice (such as perl or bash).

Table 4-14. Nios Il SBT Utilities and Scripts

Command Summary Utility Script
nios2-app-generate-makefile Creates an application makefile v
nios2-lib-generate-makefile Creates a user library makefile v
nios2-app-update-makefile Modifies an existing application makefile v
nios2-lib-update-makefile Modifies an existing user library makefile v
nios2-hsp-create-settings Creates a BSP settings file v
nios2-hsp-update-settings Updates the contents of a BSP settings file v
nios2-bhsp-query-settings Queries the contents of a BSP settings file v
nios2-bsp-generate-files Generates all files for a given BSP settings file v
nios2-bsp Creates or updates a BSP v
create-this-app Creates an example application project v
create-this-bsp Creates an example BSP project v

The Nios II SBT utilities reside in the <Nios II EDS install path>/sdk2/bin directory.

-o For further information about the Nios II SBT, refer to the Getting Started from the

Command Line chapter of the Nios II Software Developer’s Handbook.

File Format Conversion Tools

File format conversion is sometimes necessary when passing data from one utility to
another. Table 4-15 shows the Altera-provided utilities for converting file formats.

Table 4-15. File Conversion Utilities

Utility

Description

bin2flash

Converts binary files to a Nios Il Flash Programmer File (.flash) for
programming to flash memory.

elf2dat

Converts a .elf file to a .dat file format appropriate for Verilog HDL hardware
simulators.

elf2flash

Converts a .elf file to a .flash file for programming to flash memory.

elf2hex

Converts a .elf file to a Hexadecimal (Intel-format) File (.hex).

elf2mem

Generates the memory contents for the memory devices in a specific Nios Il
system.

elf2mif

Converts a .elf file to a Quartus® Il Memory Initialization File (.mif).

flash2dat

Converts a .flash file to the .dat file format appropriate for Verilog HDL
hardware simulators.

sof2flash

Converts an SRAM Object File (.sof) to a .flash file.

The file format conversion tools are in the <Nios II EDS install path>/bin/ directory.

Nios Il Software Developer’s Handbook

January 2014 Altera Corporation

http://www.altera.com/literature/hb/nios2/n2sw_nii52014.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52014.pdf

Chapter 4: Nios Il Software Build Tools 4-47
Restrictions

Other GCommand-Line Tools

Table 4-16 shows other Altera-provided command-line tools for developing Nios II
programs.

Table 4-16. Altera Command-Line Tools

Tool Description

nios2-download Downloads code to a target processor for debugging or running.

Allows multiple files to be converted to .flash files, and optionally
programs each file to the specified location on a flash device.

nios2-flash-programmer-generate

nios2-flash-programmer Programs data to flash memory on the target board.
Translates GNU debugger (GDB) remote serial protocol packets over

nios2-gdb-server Transmission Control Protocol (TCP) to JTAG transactions with a
target Nios Il processor.

nios2-terminal Performs terminal I/0 with a JTAG UART in a Nios Il system

validate_zip \(enfles if a specified zip file is compatible with Altera’s read-only zip
file system.

nios2-debug Downloads a program to a Nios Il processor and launches the Insight
debugger.

Configures an Altera configurable part. If no explicit .sof file is
specified, it tries to determine the correct file to use.

Allows you configure the JTAG server on the host machine. It can also
detect a JTAG chain and set up the download hardware configuration.

nios2-configure-sof

jtagconfig

The command-line tools described in this section are in the <Nios II EDS install path>/
bin/ directory.

Restrictions

The Nios II SBT supports BSPs incorporating the Altera HAL and Micrium
MicroC/OS-II only.

Document Revision History

Table 4-17 shows the revision history for this document.

Table 4-17. Document Revision History (Part 1 of 2)

Date Version Changes
m Updated GCC4 toolchain from 4.1.2 to GCC 4.7.3.
January 2014 13.1.0 | m Removed references to Nios Il IDE.

m Removed references to Nios 11 GCC3.

m Introduction of Qsys system integration tool
m The GCC 3 toolchain is an optional feature
February 2011 10.1.0 | Removed “Referenced Documents” section.

May 2011 11.0.0

January 2014 Altera Corporation Nios Il Software Developer’s Handbook

4-48 Chapter 4: Nios Il Software Build Tools
Document Revision History

Tahle 4-17. Document Revision History (Part 2 of 2)

Date Version Changes

m Added explanation of the effects of disabled BSP file generation.
m Described regeneration of BSP with changed memory sizes.

m Described GCC 4.

m Described GCC 3 and GGC 4 command shells

m Chapter repurposed and retitled to cover Nios Il Software Build Tools functionality
November 2009 91.0 applicable to both command line and Eclipse.

m Describe the Nios Il Flash Programmer

m Moved information about Tcl-based device drivers and software packages, formerly in
this chapter, to Developing device Drivers for the Hardware Abstraction Layer.

March 2009 9.0.0 |m= Described how to work with compiler optimization and debugger settings.
m Described newlib recompilation.

m Corrected minor typographical errors.

m Advanced exceptions added to Nios Il core.

July 2010 10.0.0

May 2008 8.0.0 | = Added instructions for writing instruction-related exception handler.
m Design examples removed from list.
October 2007 7.2.0 | Initial release. Material moved here from former Nios Il Software Build Tools chapter.

Nios Il Software Developer’s Handbook January 2014 Altera Corporation

QA | |:| = 0)/) Section Il. Hardware Abstraction Layer

This section describes the Nios® I hardware abstraction layer (HAL). It includes the
following chapters:

m Chapter 5, Overview of the Hardware Abstraction Layer
m Chapter 6, Developing Programs Using the Hardware Abstraction Layer

m Chapter 7, Developing Device Drivers for the Hardware Abstraction Layer

January 2014 Altera Corporation Nios Il Software Developer’s Handbook

-2 Section Il: Hardware Abstraction Layer

Nios Il Software Developer’s Handbook January 2014 Altera Corporation

fAN |:| =N 5. Overview of the Hardware Abstraction
— ® Layer

NII152003-11.0.0

This chapter introduces the hardware abstraction layer (HAL) for the Nios® II
processor. This chapter contains the following sections:

m “Getting Started with the Hardware Abstraction Layer” on page 5-1
m “HAL Architecture for Embedded Software Systems” on page 5-2
m “Supported Peripherals” on page 54

The HAL is a lightweight embedded runtime environment that provides a simple
device driver interface for programs to connect to the underlying hardware. The HAL
application program interface (API) is integrated with the ANSI C standard library.
The HAL API allows you to access devices and files using familiar C library functions,
such as printf (), fopen(), fwrite(), etc.

The HAL serves as a device driver package for Nios II processor systems, providing a
consistent interface to the peripherals in your system. The Nios II software
development tools extract system information from your SOPC Information File
(.sopcinfo). The Nios II Software Build Tools (SBT) generate a custom HAL board
support package (BSP) specific to your hardware configuration. Changes in the
hardware configuration automatically propagate to the HAL device driver
configuration. As a result, changes in the underlying hardware are prevented from
creating bugs.

HAL device driver abstraction provides a clear distinction between application and
device driver software. This driver abstraction promotes reusable application code
that is resistant to changes in the underlying hardware. In addition, the HAL standard
makes it straightforward to write drivers for new hardware peripherals that are
consistent with existing peripheral drivers.

Getting Started with the Hardware Abstraction Layer

The easiest way to get started using the HAL is to create a software project. In the
process of creating a new project, you also create a HAL BSP. You need not create or
copy HAL files, and you need not edit any of the HAL source code. The Nios II SBT
generates the HAL BSP for you.
“ e Foran exercise in creating a simple Nios Il HAL software project, refer to “Getting
Started with Eclipse” in the Getting Started with the Graphical User Interface chapter of
the Nios 1I Software Developer’s Handbook.

In the Nios II SBT command line, you can create an example BSP based on the HAL
using one of the create-this-bsp scripts supplied with the Nios Il Embedded Design
Suite.

You must base the HAL on a specific hardware system. A Nios II system consists of a
Nios II processor core integrated with peripherals and memory. Nios II systems are
generated by Qsys or SOPC Builder.

© 2011 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX are Reg. U.S. Pat. & Tm. Off.
and/or trademarks of Altera Corporation in the U.S. and other countries. All other trademarks and service marks are the property of their respective holders as described at
www.altera.com/common/legal.html. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera’s standard warranty, but
reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
specifications before relying on any published information and before placing orders for products or services.

Nios Il Software Developer’s Handbook Ivl

May 2011
Subscribe

http://www.altera.com/common/legal.html
https://www.altera.com/servlets/subscriptions/alert?id=NII52003
http://www.altera.com/literature/hb/nios2/n2sw_nii52017.pdf

5-2

Chapter 5: Overview of the Hardware Abstraction Layer
HAL Architecture for Embedded Software Systems

If you do not have a custom Nios II system, you can base your project on an
Altera-provided example hardware system. In fact, you can first start developing
projects targeting an Altera® development board, and later re-target the project to a
custom board. You can easily change the target hardware system later.

«o For information about creating a new project with the Nios II SBT, refer to the Getting

Started with the Graphical User Interface chapter of the Nios 1I Software Developer’s
Handbook, or to the Getting Started from the Command Line chapter of the Nios II Software
Developer’s Handbook.

HAL Architecture for Embedded Software Systems

This section describes the fundamental elements of the HAL architecture.

Services

The HAL provides the following se