
July 2011 Altera Corporation

AN-391-3.0

© 2011 Altera Corporation. Al
QUARTUS and STRATIX are
All other trademarks and serv
www.altera.com/common/le
accordance with Altera’s stand
without notice. Altera assume
service described herein excep
version of device specification

101 Innovation Drive
San Jose, CA 95134
www.altera.com
Profiling Nios II Systems
Application Note
This application note describes the methods to measure the performance of a Nios® II
system with the GNU profiler (nios2-elf-gprof), the performance counter component,
and the timestamp interval timer component. This application note also includes two
tutorials to measure performance in the Altera® Nios II Software Build Tools (SBT)
development flow.

Requirements
You must be familiar with the Nios II SBT development flow for Nios II systems,
including the Quartus® II software and Qsys to use the tutorials.

Obtaining the Hardware Design
The tutorials in this application note work with the Nios II Ethernet Standard Design
Example.

To use the design example, unzip the .zip for your development kit to a working
directory on your system.

1 This application note refers the software example directory as <project_directory>.

Obtaining the Software Examples
To obtain the software examples for this application note, follow these steps:

1. Download the profiler_software_examples.zip.

2. Unzip the profiler_software_examples.zip to <project_directory> in your system.

1 This application note refers the directory as <profiler_software_examples>.
Subscribe

l rights reserved. ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS,
Reg. U.S. Pat. & Tm. Off. and/or trademarks of Altera Corporation in the U.S. and other countries.
ice marks are the property of their respective holders as described at
gal.html. Altera warrants performance of its semiconductor products to current specifications in
ard warranty, but reserves the right to make changes to any products and services at any time

s no responsibility or liability arising out of the application or use of any information, product, or
t as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest
s before relying on any published information and before placing orders for products or services.

http://www.altera.com
https://www.altera.com/servlets/subscriptions/alert?id=AN-391
http://www.altera.com/common/legal.html
http://www.altera.com/literature/an/profiler_software_examples.zip
http://www.altera.com/support/examples/nios2/exm-net-std-de.html
http://www.altera.com/support/examples/nios2/exm-net-std-de.html

Page 2 Tools
Tools
You can use the GNU profiler without making any hardware changes to your Nios II
system. This tool directs the compiler to add calls to profiler library functions into
your application code.

The performance counter component and the timestamp component are minimally
intrusive hardware methods for measuring the performance of a Nios II system. This
application note describes and compares the two components. To use these methods,
you add the hardware components to your system, and you add macro invocations to
your source code to start and stop the components. The hardware components
perform the measurements.

Compiler speed optimizations affect functions to widely varying degrees. Compiler
size optimizations also affect functions in different ways. These differences impact the
cache usage and the resource contention, which can change the relative start times
and therefore increase the execution times of functions. For these reasons, you must
optimize your code with the -O3 compiler switch, and then perform profiling on the
code to gain the most insight on how to improve an application in its final form.

The tutorials use three tools to measure the performance of a Nios II system, as
described in the following sections:

■ GNU Profiler

■ Altera Performance Counter

■ High-Resolution Timer

In addition, the program counter trace collection tool is available for some Nios II
processors. However, the tutorials do not use this tool.

You use the GNU profiler to identify the areas of code that consume the most CPU
time, and a performance counter or a timer component to analyze functional
bottlenecks.

GNU Profiler
You must make minimal changes to the source code to take measurements for analysis
with the GNU profiler. To implement the required changes, follow these steps:

1. In the Nios II SBT, enable the GNU profiler in your project by turning on the
hal.enable_gprof and hal.enable_exit board support package (BSP)
settings.

1 If you use the Nios II SBT for Eclipse, the software enables
hal.enable_exit by default.

2. Verify that your main() function returns.

1 When main() calls return() or terminates, alt_main() calls exit()
as appropriate for profiling. The exit() function runs the BREAK 2
instruction, which causes the profiling data to write to the gmon.out on the
host computer.

3. Rebuild the BSP and the application project.
Profiling Nios II Systems July 2011 Altera Corporation

Tools Page 3
Altera Performance Counter
A performance counter is a block of counters in the hardware that measures the
execution time of the code sections that you choose. A performance counter
component can track up to seven code sections. By default, the component tracks
three code sections. A pair of counters tracks each code section:

■ Time—A 64-bit time (clock tick) counter that counts the number of clock ticks
during code section runs.

■ Occurrences—A 32-bit event counter that counts the number of times the code
section runs.

1 You can change the maximum number of measured code sections by editing the
performance counter component in Qsys.

These counters enable you to measure the execution time of the designated sections of
C/C++ code. Macros enable you to mark the start and the end of the code sections in
your program. The performance counter component has up to seven pairs of
counters, supporting as many as seven measured sections of C/C++ code. You must
add macros to your code at the start and end of each measured section. An additional,
built-in pair of counters aggregates the individual code section counters, enabling you
to measure each section as a fraction of a larger program.

You can use performance counters for analyzing determinism and other runtime
issues.

1 The performance counter component occupies a substantial number of logic elements
(LEs) on your device, and requires software implementation to obtain performance
measurements.

High-Resolution Timer
A high-resolution timer, in contrast to a performance counter component, does not
use a large number of LEs on your device, and does not require heavy
implementation of every function call in your code to obtain performance
measurements. Timers require explicit read calls in the sections of the source code that
you want to measure, so their use is better suited for pinpointing the performance
issues in a program. You must implement the source code manually; however,
because this implementation is less pervasive, therefore, this implementation is also
less intrusive. Unlike the performance counter macros, the timer requires many more
processor cycles to make two function calls; one to read the time at the beginning of a
measured section, and one to read the time at the end.
July 2011 Altera Corporation Profiling Nios II Systems

Page 4 Using the GNU Profiler to Measure Code Performance
Program Counter Trace Information
The Nios II processor can generate complete and accurate program counter trace
information. However, the GNU profiler does not use this information. To generate
this information, you must have a Nios II processor configured with a JTAG debug
module of level 3 or greater. The level 3 JTAG debug module creates on-chip trace
data. You can capture approximately a dozen instructions in the on-chip trace buffer.

You can obtain a much larger trace by configuring a Nios II core with a level 4 JTAG
debug module to generate off-chip trace information; however, you need a First
Silicon Solutions, Inc. (FS2) or Lauterbach Datentechnik GmBH (Lauterbach)
(www.lauterbach.com) hardware to collect this off-chip trace data.

f For more information about the Lauterbach hardware, refer to “Debuggers” in the
Debugging Nios II Designs chapter of the Embedded Design Handbook.

Using the GNU Profiler to Measure Code Performance
The following sections explain the advantages and limitations of using the GNU
profiler for performance analysis. A tutorial demonstrates the use of the GNU profiler
to collect and analyze performance data.

GNU Profiler Advantages
The major advantage to measuring performance with the GNU profiler is that the
GNU profiler provides an overview of the entire system. Although the GNU profiler
adds some overhead, the GNU profiler distributes this overhead throughout the
system evenly. The functions the GNU profiler identifies as consuming the most
processor time also consume the most processor time when you run the application at
full speed without profiler implementation.

GNU Profiler Limitations
Adding instructions to each function call for use by the GNU profiler affects the
behavior of the code in the following ways:

■ Each function is slightly larger due to the additional function call to collect
profiling information.

■ The entry and the exit time of each function due to profiling information
collection.

■ The instruction-cache misses are higher because the profiling function is in the
instruction cache memory.

■ Memory that records the profiling data can change the behavior of the data cache.

These effects can mask the time sensitive issues that you are trying to uncover
through profiling.

The GNU profiler determines the percentage of time spent in each function by
interpolation, based on periodic samplings of the program counter. The GNU profiler
ties the periodic samples to the timer tick of the system clock. The GNU profiler can
take samples only when you enable interrupts, and therefore cannot record the
processor cycles spent in interrupt routines.
Profiling Nios II Systems July 2011 Altera Corporation

http://www.altera.com/literature/hb/nios2/edh_ed_handbook.pdf
http://www.lauterbach.com

Using the GNU Profiler to Measure Code Performance Page 5
The GNU profiler cannot profile individual functions. You can use the GNU profiler
to profile the entire system, or not at all.

The profiling data is a sampling of the program counter at the resolution of the system
timer tick. Therefore, the profiling data provides estimation, not an exact
representation, of the processor time spent in different functions. You can improve the
statistical significance of the sampling by increasing the frequency of the system timer
tick. However, increasing the frequency of the tick increases the time spent recording
samples, which in turn affects the integrity of the measurement.

1 To use the GNU profiler successfully with your custom hardware design, you must
ensure that your design includes a system clock timer. The GNU profiler requires this
component to produce proper output.

Software Considerations
The GNU profiler implements your source code with functions to track processor
usage.

Profiler Mechanics
You enable the GNU profiler by turning on the hal.enable_gprof switch in the
scripts to generate the BSP. Turning on this switch automatically turns on the -pg
compiler switch and then links the profiling library code in the altera_nios2
software component with the BSP. This code counts the number of calls to each
profiled function.

The -pg compiler option forces the compiler to insert a call to the mcount() function
(located in the file altera_nios2/HAL/src/alt_mcount.S) at the beginning of every
function call. The calls to mcount() track every dynamic parent and child function
call relationship to enable the construction of a call graph. The option also installs
nios2_pcsample()function (located in the file altera_nios2/HAL/src/
alt_gmon.c) that samples the foreground program counter at every system clock
interrupt. When the program executes, the GNU profiler collects data on the host of
the gmon.out. The nios2-elf-gprof utility can read this file and display profiling
information about the program.

The profiling code operates on the target by performing the following steps:

1. The Compiler implements function prologues with a call to mcount() to enable
the Compiler to determine the function call graph. The GNU profiler
documentation refers to this data as the function call arc data.

2. The timer interrupt handler registers an alarm to capture information about the
foreground function (histogram data) that executes when the alarm triggers.

3. The heap allocates a target memory to store the profiling data.

4. When your code exits with a BREAK 2 instruction, the nios2-download utility
copies the profiling data from the target to the host.

1 The nios2-elf-gprof utility requires the function call arc data and the
histogram data to work correctly.
July 2011 Altera Corporation Profiling Nios II Systems

Page 6 Using the GNU Profiler to Measure Code Performance
f For more information about the GNU profiler, refer to the Nios II GNU
profiler documentation, included with the GCC documentation, available
on the Nios II Embedded Design Suite Support page of the Altera website.

Profiler Overhead
Using the GNU profiler impacts memory and processor cycles.

Memory

The impact of the profiling information on the .text section size is proportional to
the number of small functions in the application. The code overhead—the size of
the .text section—increases when the GNU profiler enables profiling, due to the
addition of the nios2_pcsample() and mcount() functions. The GNU profiler
implements the system timer with a call to nios2_pcsample(), and implements
every function with a call to mcount(). The .text section increases by the additional
function calls and by the sizes of these two functions.

1 To view the impact on the .text section, you can compare the sizes of the .text
sections in the .objdump.

The GNU profiler uses buckets to store data on the heap during profiling. Each bucket
is two bytes in size. Each bucket holds samples for 32 bytes of code in the .text
section. The total number of profiler buckets allocated from the heap is when you
divide the size of the .text section by 32. The heap memory that the GNU profiler
buckets consume is therefore:

((.text section size) / 32) × 2 bytes

The GNU profiler measures all functions in the object code that the GNU profiler
compiles with profiling information. This set of functions includes the library
functions, which include the run-time library and the BSP.

Processor Cycles

The GNU profiler tracks each individual function with a call to mcount(). Therefore,
if the application code contains many small functions, the impact of the GNU profiler
on processor time is larger. However, the resolution of the profiled data is higher. To
calculate the additional processor time consumed by profiling with mcount(),
multiply the amount of time that the processor requires to execute mcount() by the
number of run-time function calls in your application run.

On every clock tick, the processor calls the nios2_pcsample() function. To
calculate the required additional processor time to perform profiling with
nios2_pcsample(), multiply the time the processor requires to execute this
function by the number of clock ticks that your application requires, which includes
the time the mcount() calls and execution requires.

To calculate the number of additional processor cycles used for profiling, add the
overhead you calculated for all the calls to mcount() to the overhead you calculated
for all the calls to nios2_pcsample().
Profiling Nios II Systems July 2011 Altera Corporation

http://www.altera.com/support/ip/processors/nios2/ips-nios2_support.html

Using the GNU Profiler to Measure Code Performance Page 7
Hardware Considerations
The GNU profiler requires only a system timer. If your Nios II hardware design
includes a system timer, you do not need to change your design.

Tutorial: Using the GNU Profiler
For demonstration purposes, this tutorial uses the Nios II Ethernet Standard design
example for the Nios II Embedded Evaluation Kit, Cyclone III Edition (NEEK)
development kit. You could use other similar design examples which target your
development kit.

To configure your device with the design example, follow these steps:

1. Start the Quartus II software, version 11.0 or later.

2. On the File menu, click Open Project.

3. Open niosii_ethernet_standard_3c25.qpf.

4. On the Tools menu, click Programmer.

5. Click Start to download the SRAM Object File (.sof) to your device.

1 If the software disabled the Start button, or the Hardware Setup field does
not list the USB-Blaster™ cable, refer to the Introduction to the Quartus II
Software manual for more details on the Programmer tool.

Profiler Example with the Nios II Command Line

Creating the Profiler Software Example

To create the profiler_gnu software project in the Nios II command-line flow, follow
these steps:

1. Open a Nios II command shell by executing one of the following steps, depending
on your environment:

■ In the Windows operating system, on the Start menu, point to Programs >
Altera > Nios II EDS <version>, and click Nios II <version> Command Shell.

■ In the Linux operating system, in a command shell, change directories to
<Nios II EDS install path>, and type the command ./sdk_shell.

2. Change to the directory <profiler_software_examples>/app/profiler_gnu

3. Create and build the application with the create-this-app script, by typing the
following command:

./create-this-app r
The create-this-app script runs the create-this-bsp script, which reads settings from
the parameter_definition.tcl in <profiler_software_examples>/bsp/hal_profiler_gnu.
This Tcl file contains the following lines:

set_setting hal.enable_gprof true
set_setting hal.enable_exit true

The first setting enables the GNU profiler, and the second setting enables the
alt_main() function to call exit() following main().
July 2011 Altera Corporation Profiling Nios II Systems

http://www.altera.com/literature/manual/intro_to_quartus2.pdf
http://www.altera.com/literature/manual/intro_to_quartus2.pdf

Page 8 Using the GNU Profiler to Measure Code Performance
Running the Profiler Software Example

To run the application and collect the GNU profiler data, follow these steps:

1. Open a second Nios II command shell.

2. In the second shell, open a nios2-terminal session by typing the following
command:

nios2-terminal r
3. In your original Nios II command shell, download the .elf to the development

board, run your design, and write the GNU profiler data to the gmon.out, by
typing the following command:

nios2-download -g --write-gmon gmon.out *.elf r
The GNU profiler collects data while the application runs, and then writes the data
to the gmon.out when the application calls the exit() function. Figure 1 shows
an example of the GNU profiler output in the Nios II command shell.

4. Exit nios2-terminal by typing control-C.

Creating the GNU Profiler Report

When you run your project, your project creates the gmon.out. You must format this
file to a readable format. To format this file, follow these steps:

1. In the original Nios II command shell, change your directory to
<profiler_software_examples>/app/profiler_gnu.

2. Type the following command:

nios2-elf-gprof profiler_gnu.elf gmon.out > report.txt r
This command generates a flat profile report and a call graph, which you can view
in the report.txt.

3. Use any text editor to view the report.txt.

For more information about the GNU profiler report, refer to “Analyzing the GNU
Profiler Report” on page 10 .

Figure 1. GNU Profiler Output on Nios II Command Shell
Profiling Nios II Systems July 2011 Altera Corporation

Using the GNU Profiler to Measure Code Performance Page 9
Profiler Example with Nios II SBT for Eclipse

Creating and Running the Profiler Software Example

1. Start the Nios II SBT for Eclipse.

2. Under File menu, point to New, and click Nios II Application and BSP from
template.

3. Set SOPC Information File name by browsing to locate the SOPC Information File
(.sopcinfo) in <project_directory>.

4. Name your project, such as profiler_gnu.

5. Under Templates, select Blank Project.

6. Click Finish to create your new project.

7. Locate the <profiler_software_examples>/eclipse_source_files/profiler_gnu folder
and copy all the files in this directory. In Nios II SBT for Eclipse, right click on
profiler_gnu in Project Explorer view and select Paste.

8. Right click your project in the Project Explorer view, point to Nios II and click BSP
Editor.

9. In the Nios II BSP Editor, turn on hal.enable_gprof to enable the GNU profiler
in your project.

10. Generate your BSP project and exit.

11. Right click your project in the Project Explorer view and then click Build Project.

12. To download and run the profiler_gnu software, right click your project, point to
Run As, and then click Nios II Hardware.

Figure 2 shows the output of the software to the Nios II console.

Viewing the GNU Profiler Report

The software creates the gmon.out in your project folder, which you can view in the
Project Explorer view of the Nios II SBT for Eclipse. If the gmon.out does not appear,
right click on your project and select Refresh. When you open gmon.out, the Nios II
SBT for Eclipse switches to the Profiling view, in which you can view the report. For
more information about the GNU profiler report, refer to “Analyzing the GNU
Profiler Report”.

Figure 2. Nios II Console After Running profiler_gnu
July 2011 Altera Corporation Profiling Nios II Systems

Page 10 Using the GNU Profiler to Measure Code Performance
Analyzing the GNU Profiler Report
The information in this section is applicable to the GNU profiler report that the
command line or the Nios II SBT for Eclipse generates.

The GNU profiler report contains information in the following formats:

■ The flat profile portion of the report identifies the child functions in the order in
which they consume processing time.

■ The call graph portion of the report describes the call tree of the program sorted by
the total amount of time spent in each function and its children. Each entry in this
table consists of several lines. The line with the index number at the left hand
margin lists the current function. The lines above it list the functions that called
this function, and the lines below it list the functions this one called, with
exceptions and conditions detailed further in the report itself and the GNU profiler
documentation.

f For more information, refer to the Nios II GNU profiler documentation,
with the GCC documentation, available at the Nios II Embedded Design
Suite Support page.

Example 1 shows the GNU profiler report excerpts from the previous tutorial. In
Example 1, the flat profile shows that the checksum_test_routine() function call
consumed 79.19% of the processing time during the execution.

The granularity statement in the call graph report states that the report covers 2.55
seconds (2550 milliseconds). The Nios II timer (sys_clk_timer) has a 10 millisecond
timer. The GNU profiler calls the timer interrupt once at the beginning, before a full
clock period elapsed, and once every 10 milliseconds thereafter. A precise report,
therefore, would show that the GNU profiler calls the timer interrupt handler 255
times. Index[13] shows that the GNU profiler calls
alt_avalon_timer_sc_irq()256 times, which is in the precision range of this
measurement method.
Profiling Nios II Systems July 2011 Altera Corporation

http://www.altera.com/support/ip/processors/nios2/ips-nios2_support.html
http://www.altera.com/support/ip/processors/nios2/ips-nios2_support.html

Using Performance Counter and Timer Components Page 11
1 Note that the result you see may vary from Example 1.

Using Performance Counter and Timer Components
After the GNU profiler identifies areas of code that consume the most processor time,
a performance counter or a timer component can further analyze these functional
bottlenecks.

The following sections describe the advantages and limitations of using performance
counters and timers for performance analysis. A tutorial demonstrates the use of
performance counters and timers to collect and analyze performance data.

Performance Counter Advantages
Performance counters are the only mechanism available with the Nios II development
kits that provide measurements with little intrusion. You can use efficient macros to
start and stop the measurement for each measured section. A performance counter is
an order of magnitude faster than the GNU profiler. The only less intrusive way to
collect measurement data would be a completely hardware-based solution, such as a
logic analyzer configured with triggers on particular bus addresses.

Example 1. Flat Profile and Call Graph Example

Flat profile:

Each sample counts as 0.01 seconds.
% cumulative self self total

time seconds seconds calls s/call s/call name
79.19 2.02 2.02 1 2.02 2.03 checksum_test_routine
18.01 2.48 0.46 1 0.46 0.46 alt_busy_sleep

.

.

.

Call graph (explanation follows)

granularity: each sample hit covers 32 byte(s) for 0.39% of 2.55 seconds

index % time self children called name
 0.00 0.00 273/273 alt_irq_entry [106]

[13] 0.0 0.00 0.00 273 alt_irq_handler [13]
 0.00 0.00 256/256 alt_avalon_timer_sc_irq [14]
 0.00 0.00 17/17 altera_avalon_jtag_uart_irq [17]

.

.

.

July 2011 Altera Corporation Profiling Nios II Systems

Page 12 Using Performance Counter and Timer Components
Timer Advantages
Unlike the performance counter, which can track only seven sections of code
simultaneously, the timer has no such limit. You can read the timer 1,000 times and
store the timer in 1,000 different variables as a start time for a section. Then, you can
compare the timer to 1,000 end timer readings. The only practical limiting factors are
memory consumption, processor overhead, and complexity.

Performance Counter and Timer Hardware Considerations
One disadvantage to measuring performance with a performance counter is the size
of the counter. The performance counter component consumes a large number of LEs
on your device.

On a 3C120 device, a single performance counter component with three section
counters defined in a modified standard hardware design consumes 671 logic cells
(LCs), and 420 LC registers. In the same design, a single performance counter defined
with seven section counters consumes 1339 logic cells and 808 LC registers. The
resource usage of the performance counter component is nearly identical on all
devices.

1 Remove the performance counter from the final version of your system to save
resources.

The timer consumes hardware resources, although substantially less than a
performance counter. The timer also introduces an additional interrupt source in the
system that impacts interrupt latency.

1 Adding performance counters and timers can reduce fMAX.

Performance Counter and Timer Software Considerations
A common disadvantage of performance counters and timers is the lack of context
awareness. If a timer interrupt occurs during the measurement of a section of code,
performance counters and timers add the time taken by the processor to process the
timer interrupt to the total measurement time. This effect occurs for simple interrupts
and multithreading context switching, although this effect occurs more in a
multithreaded system. Many threads or interrupt service routines might execute
while you measure the section of code, resulting in a very large, skewed
measurement. The resulting measurement distortion is unpredictable, and has no
correlation with the behavior of the code section you are attempting to measure.

To avoid context switch impacts, most multithreaded operating systems have a
system call to temporarily lock the scheduler. Alternatively, you can disable interrupts
to avoid context switches during section measurement.

1 Disabling interrupts or locking the scheduler affects the behavior of your system, so
you must use these techniques only as a last resort.
Profiling Nios II Systems July 2011 Altera Corporation

Using Performance Counter and Timer Components Page 13
Performance Counter Software Considerations
You must use the PERF_BEGIN and PERF_END performance counter macros to record
the beginning and ending times of each measured section.

PERF_BEGIN and PERF_END are single writes to the performance counter
component. These macros are very efficient, requiring only two or three machine
instructions.

Example 2 shows the PERF_BEGIN and PERF_END performance counter macros in
altera_avalon_performance_counter.h:

The Global Counter
The performance counter component contains several counters. You can configure the
number of measured sections in Qsys. You have one pair of counters for each
measured section, as described in “Altera Performance Counter” on page 3. In
addition, the performance counter component always has a global counter.

The global counter measures the total time of the measurement. When you stop the
global counter, other counters do not run. The PERF_START_MEASURING and
PERF_STOP_MEASURING macros control the global counter.

w Do not attempt to manipulate the global counter in any other way.

f For more information about performance counters, refer to the Performance Counter
Core chapter in the Embedded Peripherals IP User Guide.

Hardware Considerations
Performance counters and timestamp interval timers are Qsys components. When
you add one to an existing system, you must regenerate the Qsys system and
recompile the .sof in the Quartus II software. Timers and performance counters can
eventually overflow, such as any hardware counter.

Tutorial: Using Performance Counters and Timers
This tutorial demonstrates the use of performance counters and timestamp interval
timers to measure the performance of a Nios II system more precisely than is possible
with the GNU profiler, by identifying the sections of code that use the most processor
time.

This tutorial uses the same NEEK design as the GNU profiler tutorial. This design has
an interval timer and a performance counter. You can change the timer interval and
the number of sections that the performance counter measures.

Example 2. PERF_BEGIN and PERF_END Performance Counter Macros in
altera_avalon_performance_counter.h

#define PERF_BEGIN(p,n) IOWR((p),(((n)*4)+1),0)

#define PERF_END(p,n) IOWR((p),(((n)*4)),0)
July 2011 Altera Corporation Profiling Nios II Systems

http://www.altera.com/literature/hb/nios2/qts_qii55001.pdf
http://www.altera.com/literature/hb/nios2/qts_qii55001.pdf

Page 14 Using Performance Counter and Timer Components
Modifying the Nios II Hardware Design
You must modify the Nios II Ethernet Standard design example for this tutorial. To
modify the Nios II Ethernet Standard design example, follow these steps:

1. In Quartus II software, on the Tools menu, click Qsys.

2. In <project_directory>, click peripheral_system.qsys.

3. Right click the high_res_timer module and then click Edit.

4. Under Timeout period, set the interval time Period to 1 and the units to us
(microseconds).

5. Click Finish.

6. On the File menu, click Save.

7. The Nios II Ethernet Standard design example is a hierarchal based design. To
generate the system, on the File menu, click Open, and then select
eth_std_main_system.qsys.

8. Click the Generation tab.

9. Turn on the Create HDL design files for synthesis and Create block symbol file
(.bsf) options.

10. Ensure that the Output Directory path is
<project_directory>/eth_std_main_system.

11. Click Generate. Save the system if the software prompts you to do so.

12. Exit Qsys when generation is complete.

13. To generate the .sof, in the Quartus II software, on the Processing menu, click Start
Compilation.

14. Click OK when the following message appears:

Full Compilation was successful

Programming the Hardware Design to Your Device
After compiling your modified hardware design, you can program the hardware
design to your device. To do so, follow these steps:

1. On the Tools menu, click Programmer.

2. Click Start to download the .sof to your device.

f If the software disables the Start button, or the Hardware Setup field does
not list the USB-Blaster cable, refer to the Introduction to the Quartus II
Software manual for more details on the Programmer tool.
Profiling Nios II Systems July 2011 Altera Corporation

http://www.altera.com/literature/manual/intro_to_quartus2.pdf
http://www.altera.com/literature/manual/intro_to_quartus2.pdf

Using Performance Counter and Timer Components Page 15
Performance Counter Example with the Nios II Command Line
This section describes how to create and run the performance counter software
example with the Nios II command line.

Creating the Performance Counter Software Example

To create the profiler_performance_counter software project in the Nios II software
build flow, follow these steps:

1. Open a Nios II command shell as described in “Creating the Profiler Software
Example” on page 7.

2. Change to the <profiler_software_examples>/app/profiler_performance_counter
directory.

3. Create and build the application by typing the following command:

./create-this-app r
The create-this-app script runs the create-this-bsp script, which reads settings
from the parameter_definition.tcl in
<profiler_software_examples>/bsp/hal_profiler_performance_counter. This Tcl file
contains the following lines:

set_setting hal.sys_clk_timer peripheral_subsystem_sys_clk_timer

set_setting hal.timestamp_timer peripheral_subsystem_high_res_timer

set_setting hal.enable_gprof true

set_setting hal.enable_exit true

The first two lines set the system clock timer and timestamp timer to the
corresponding timers in the Qsys system.

The third line enables the GNU profiler, and the last line enable the alt_main()
function to call exit() following main().

Running the Performance Counter Software Example

To run the application and collect the GNU profiler data, follow these steps:

1. Open a second Nios II command shell.

2. In the second shell, open a nios2-terminal session by typing the following
command:

nios2-terminal r
3. In your original Nios II command shell, run the program by typing the following

command:

nios2-download -g *.elf r
July 2011 Altera Corporation Profiling Nios II Systems

Page 16 Using Performance Counter and Timer Components
Figure 3 shows an example of the output that appears in the Nios II command shell.
Your output might vary. For more information, refer to “Analyzing the Performance
Counter Report”.

Performance Counter Example with Nios II SBT for Eclipse
This section describes how to create and run the profiler_performance_counter
software example with the Nios II SBT for Eclipse.

1. Start the Nios II SBT for Eclipse.

2. Under File menu, point to New, and click Nios II Application and BSP from
template.

3. Set SOPC Information File name by browsing to the <project_directory> directory
and selecting the .sopcinfo.

4. Give your project a name, for example profiler_performance_counter.

5. Under Templates, select Blank Project.

6. Click Finish to create your new project.

7. Locate the
<profiler_software_examples>/eclipse_source_files/profiler_performance_counter
folder, and copy all the files in this directory. In Nios II SBT for Eclipse, right click
on profiler_gnu in Project Explorer view and select Paste.

8. Right click your project in the Project Explorer view, point to Nios II and click BSP
Editor.

9. In the Nios II BSP Editor, turn on hal.enable_gprof to enable the GNU profiler
in your project.

10. Set the hal.sys_clk_timer to the peripheral_subsystem_sys_clk_timer
component.

11. Set hal.timestamp_timer to the peripheral_subsystem_high_res_timer
component.

Figure 3. Performance Counter Report on Nios II Command Shell
Profiling Nios II Systems July 2011 Altera Corporation

Conclusion Page 17
12. Generate your BSP project and exit.

13. Right click your project in the Project Explorer view, point to Build Project.

14. To run the profiler_performance_counter software, right click your application
project, point to Run As and click Nios II Hardware.

Figure 4 shows the Nios II Console output after running
profiler_performance_counter. The data are similar to the command-line example in
Figure 3. For more information, refer to “Analyzing the Performance Counter
Report”.

Analyzing the Performance Counter Report
The information in this section is applicable to the performance counter report that
the command line or the Nios II SBT for Eclipse generates.

pc_overhead is the performance counter component overhead due to a single call to
the PERF_BEGIN macro. This number includes the overhead of executing the
PERF_BEGIN macro and the corresponding PERF_END macro for this measured
section.

ts_overhead is the timestamp overhead—the overhead of a single function call to
read the timer. This number includes the performance counter overhead to implement
the measurement.

Conclusion
The Nios II development environment provides several tools to analyze the
performance of your project. The software-only GNU profiler approach adds minimal
overhead. To analyze deterministic real-time performance issues, you can use a
hardware timer or a performance counter. To choose the best tool for your task,
consider the problem that you are solving.

Figure 4. Performance Counter Report on Nios II Console
July 2011 Altera Corporation Profiling Nios II Systems

Page 18 Troubleshooting
Troubleshooting
The following sections describe several problems that might occur, and suggest ways
to troubleshoot the problems.

nios2-elf-gprof –annotated-source Switch Has No Effect
The profiler does not track the basic-block-count information, so switches (such
as the –annotated-source switch) do not work.

Writing to the Registers of a Nonexistent Section Counter
The performance counter report in Example 3 shows what happens when you
attempt to use a nonexistent section counter of the performance counter component.

Assume a fourth section counter specifies a performance counter component that
Qsys defines to have three section counters only (the default value).

In Example 3, the test is performed on a hardware design that does not have any other
component defined with registers mapped immediately after the registers of the
performance counter component. Therefore, there is no impact to other component.
Depending on how you configure the component register base addresses in Qsys for a
particular hardware design, unpredictable system behavior could occur.

Output From a printf() or perf_print_formatted_output() Call Near the End
of main() Might Be Prematurely Truncated

This issue occurs when the Nios II application executes a BREAK instruction to
transfer profiling data to the development workstation during the exit() or
return() from main().

As a workaround, call usleep(500000) before exiting or returning from main().
This call creates an adequate delay for you to transmit the I/O to the JTAG UART
before main returns (or calls exit()). If the output is still partially truncated,
increase the delay value passed to usleep(). Use #include <unistd.h> for the
usleep() function prototype.

Example 3. Result of Using a Nonexistent Section Counter

--Performance Counter Report--
Total Time: 5.78751 seconds (289375582 clock-cycles)
+--------------------+--------+-------------+---------------+-----------+
| Section | % | Time (sec) | Time (clocks) |Occurrences|
+--------------------+--------+-------------+---------------+-----------+
|sleep_tests | 49.4| 2.86162| 143081026| 1|
+--------------------+--------+-------------+---------------+-----------+
|perf_begin_overhead | 7.6e-06| 0.00000| 22| 1|
+--------------------+--------+-------------+---------------+-----------+
|timestamp_overhead | 7.6e-06| 0.00000| 22| 1|
+--------------------+--------+-------------+---------------+-----------+
|non_existent_counter|6.37e+12|368934881474.19104| -1| 4294967295|
+--------------------+--------+-------------+---------------+-----------+
Profiling Nios II Systems July 2011 Altera Corporation

Further Reading Page 19
Fitting a Performance Counter in a Hardware Design That Consumes Most
of a Device's Resources

During development, you can measure the system in a larger device than the size of
your device in a deployed system.

Configure a performance counter to have only one section counter to save the most
resources.

The Histogram for the gmon.out File Is Missing, Even Though My main()
Function Terminates

If you do not define a system timer for the system, the profiler does not call the
nios2_pcsample() function, and does not generate the histogram for the
gmon.out. Define a system timer for your system.

Further Reading

f For information about the GNU profiler, refer to the Nios II GNU profiler
documentation, included with the GCC documentation, available at the Nios II
Embedded Design Suite Support.

f Because Altera has rewritten the lib-gprof library, the information in this
application note about data collection deviates from Altera’s
implementation.

f For information about the performance counter, refer to the Performance Counter Core
chapter in the Embedded Peripherals IP User Guide. For information about the
high-speed timer, refer to the Timer Core chapter in the Embedded Peripherals IP User
Guide.
July 2011 Altera Corporation Profiling Nios II Systems

http://www.altera.com/support/ip/processors/nios2/ips-nios2_support.html
http://www.altera.com/support/ip/processors/nios2/ips-nios2_support.html
http://www.altera.com/literature/hb/nios2/qts_qii55001.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51008.pdf

Page 20 Document Revision History
Document Revision History
Table 1 shows the revision history for this application note.

Table 1. Document Revision History

Date Version Changes

July 2010 3.0

This revision incorporates the following changes:

■ Replaced mentions of SOPC Builder with Qsys.

■ Updated “Obtaining the Hardware Design” on page 1, “Obtaining the Software Examples”
on page 1, “Program Counter Trace Information” on page 4, “Tutorial: Using the GNU
Profiler” on page 7, “Creating the Profiler Software Example” on page 7, “Creating the
GNU Profiler Report” on page 8, “Creating and Running the Profiler Software Example”
on page 9“Analyzing the GNU Profiler Report” on page 10“Flat Profile and Call Graph
Example” on page 11, “Modifying the Nios II Hardware Design” on page 14, “Creating the
Performance Counter Software Example” on page 15, “Running the Performance Counter
Software Example” on page 15, and “Performance Counter Example with Nios II SBT for
Eclipse” on page 16.

May 2010 2.0

This revision incorporates the following changes:

■ Updated document, software and screen shots for the Nios II SBT for Eclipse

■ Added the Nios II SBT for Eclipse flow

■ Updated examples for the NEEK

July 2008 1.3

This revision incorporates the following changes:

■ Updated document for the Quartus II software and Nios II EDS v8.0.

■ Replaced references to the Nios II IDE with instructions in the Nios II software build flow.

■ General updates for the Quartus II software v8.0.

February 2006 1.2 Updated document for the Quartus II software and Nios II EDS v5.1 SP1.

November 2005 1.1 Updated document for the Quartus II software and Nios II EDS v5.1.

August 2005 1.0 Initial release.
Profiling Nios II Systems July 2011 Altera Corporation

	Profiling Nios II Systems
	Requirements
	Obtaining the Hardware Design
	Obtaining the Software Examples

	Tools
	GNU Profiler
	Altera Performance Counter
	High-Resolution Timer
	Program Counter Trace Information

	Using the GNU Profiler to Measure Code Performance
	GNU Profiler Advantages
	GNU Profiler Limitations
	Software Considerations
	Profiler Mechanics
	Profiler Overhead

	Hardware Considerations
	Tutorial: Using the GNU Profiler
	Profiler Example with the Nios II Command Line
	Profiler Example with Nios II SBT for Eclipse
	Analyzing the GNU Profiler Report

	Using Performance Counter and Timer Components
	Performance Counter Advantages
	Timer Advantages
	Performance Counter and Timer Hardware Considerations
	Performance Counter and Timer Software Considerations
	Performance Counter Software Considerations
	The Global Counter
	Hardware Considerations
	Tutorial: Using Performance Counters and Timers
	Modifying the Nios II Hardware Design
	Programming the Hardware Design to Your Device
	Performance Counter Example with the Nios II Command Line
	Performance Counter Example with Nios II SBT for Eclipse
	Analyzing the Performance Counter Report

	Conclusion
	Troubleshooting
	nios2-elf-gprof –annotated-source Switch Has No Effect
	Writing to the Registers of a Nonexistent Section Counter
	Output From a printf() or perf_print_formatted_output() Call Near the End of main() Might Be Prematurely Truncated
	Fitting a Performance Counter in a Hardware Design That Consumes Most of a Device's Resources
	The Histogram for the gmon.out File Is Missing, Even Though My main() Function Terminates

	Further Reading
	Document Revision History

