Nios Il C2H Compiler
User Guide

101 Innovation Drive

San Jose, CA 95134

www.altera.com Nios Il C2H Compiler Version: 9.1
Document Date: November 2009

http://www.altera.com

Copyright © 2009 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo, specific device des-
ignations, and all other words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks and
service marks of Altera Corporation in the U.S. and other countries. All other product or service names are the property of their respective holders. Al-
tera products are protected under numerous U.S. and foreign patents and pending applications, maskwork rights, and copyrights. Altera warrants
performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make
changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the ap-

plication or use of any information, product, or service described herein except as expressly agreed to in writing by Altera mu
Corporation. Altera customers are advised to obtain the latest version of device specifications before relying on any published in- —
formation and before placing orders for products or services.

LS. EN ISO 9001

UG-N2C2HCMPLR-1.6

ii 9.1 Altera Corporation
Nios Il C2H Compiler User Guide

Contents

Chapter 1. Introduction to the C2H Compiler
USET GUIAE OVEIVIEW ...eiveeeeeeeeee ettt ettt et et et eae e et e et s eeteeaaeeaaeesseeseeeseenseessenseesnseesnesaeeanes
Target Audience
Introduction
Featuresccooveeiiioiiieeececeee e

Design Abstraction and the Rise of C for FPGAs
What to Expect From the C2H COmPilerccoviiiiiiiniiiiiicicc e
C2H Support in Nios II Tool Flows

C2H Compiler CONCEPLS ...cvvvviveiiirireiiicietscie sttt
Simplicity and Ease 0f USEccoiuiiiiiiiiniiiccc s s
Rapid Design Iteration to Find Optimal Partitioning of Hardware and Software 1-7
Accelerate Performance-Critical Sections of Code ..., 1-7
The C2H Compiler Operates at the Function Level ..., 1-8
System ATChItECTUTEccviiiiiiiiiiii 1-9
Generation of a Hardware AcCelerator ... 1-10
One-to-One Mapping From C Syntax to Hardware Structure R L |
Performance Depends on Memory Access Time ... 1-12

C Code Appropriate for Hardware Acceleration 1-13
Ideal Acceleration Candidatescccocceiiiiiiiiiiiniii s 1-13
Poor Acceleration Candidates ..o 1-14
Understanding Code to Find Opportunities for Acceleration 1-15

INEXE SEEPS ovviiiitieict e e ... 1-16

Chapter 2. Getting Started Tutorial

INEFOAUCHON ..o e 2-1

C2H Compiler Design FIOWc.cccciiiiiiiiiiiiiiiiciii s e 2-1
Starting Point for the C2H Compiler Design FIOWccccoviiiiviiiiiiiiiiiccccccn, 2-1

Typical Design Flow

Software REQUITEMENTSccouuiueiiiiiiiiiiciec s en e
OpenCore Plus EValUation ...t
TULOTIAL oo
Tutorial DESIZIc.cuviiiiiiiiiii e
Set up the Hardware for the Project ...
Create the SOftware ProOJECtccoiiiiiiiiiiiiiiiiicccc e
Run the Project as Software ONlY ...
Create and Configure a Hardware Accelerator ... 2-8
Rebuild the Projectc.cccoevevevinnnnns ... 2-10
Observe Results in the Report File 2-11
Observe the Accelerator in SOPC BUIldeTcccooviviiiiiiiiiiiiiiciciiccccs 2-14
Run the Project with the Accelerator ... 2-14
Remove the ACCElerator ... s 2-15

Altera Corporation 9.1 iii

Contents

INEXE STEPS .o s 2-16
Chapter 3. C-to-Hardware Mapping Reference
One-to-One C-to-Hardware Mapping ... 3-1
Arithmetic and Logical Operators ... 3-1
ASSIZNINENES ...ooviiiiiiiiii et

Iteration Statements ...
Selection STAtEMENLScccovviviiiiiiiniiiii e s
SUBFUNCHON CAllS ...
Macros and Preprocessing Directives ...
Variable Declarations ...ttt
Local vs. Non-Local Variables
Scalar Variables
Memory Accesses
Indirection Operator (Pointer Dereference)
Avalon-MM Master Port Signal Generation
Array SUbSCIIPt OPEratorc.coiuieiiiiiiiic e
Structure and Union OPerators ...
Schedulingccocvviiviiiiiiiiicc s
Scheduling Concepts for Hardware Accelerators
Pointer ALaSingc.cocovereveiveeieiicineeceece e
Read Operations with Latency
Stallingcccocovvvvvirciiiciciccce
Loop Pipelining
Subfunction Pipelining
RESOUICE SNATING ...veevvriiciiiccit et e

Chapter 4. Understanding the C2H View
TNELOAUCHION .ottt ettt et e et eete e ete e re e aeeaseetaeessenbeenseeeseeasaeenseenseenseessesssenses
OVEIVIEW ..ottt ettt et eae e e e raestaeste e beebeeaseensesrsenns
Generation/Compilation Configurations
RESOUICES ..ottt
Avalon-MM Master POrt RESOUICEScc.eovveeuiieeeieeiieteeetieete et et et eteeeteeereeereeeveeveeseeeneees
Mathematical Operator RESOUICEScouiuiuiiiiiiieieieiic e
Performanceoeeeeveevevveeveeeesreereereereeneas
SOUTCE LINE NUIMDETovievieeietieiieteeteet ettt ettt er et eve e ereete s ensesse s ensessesessenseeseesseeseeseas
LOOP LAteNICY ...ooveviieieieieeee e s
Cycles Per Loop Iteration (CPLI)
Scheduling INfOrmMationcccvuiiiiiiiiiinic e
Further REAdINGcoceveiiiimiiiicicee ettt e

Chapter 5. Accelerating Code Using the Nios Il Software Build Tools Command Line
Creating an Accelerator from the Command Line ..o 5-1
C2H Performance MELTICScccoviieuiuiuiiiieieiieeieieeereieeresereresscens 5-2

Chapter 6. Pragma Reference
TNETOAUCHON .vvevvivretiereiecteeteete ettt ettt ettt eaeebeebe et e ebeebeeseeseeseeseeseensessessensensessensseessessessersersensensens 6-1

iv 9.1 Altera Corporation
Nios Il C2H Compiler User Guide

Contents

Connection Pragmma ..o e
Reducing Arbitration Logic
Optimizing Sequential Memory Access with Arbitration Shares

Flow Control Pragma ..ot s s

Interrupt Pragma

Unshare Pointer Pragma

Chapter 7. ANSI C Compliance and Restrictions

INEFOAUCHON ..o e 7-1
LaNGUAZE «ovenvveteviitetett e e bbb 7-1
DECLATALIONS ..ot 7-1
Expressions
FUNCHONS .o
Miscellaneous Unsupported Features ... 7-8

Other Restrictions

Additional Information
Referenced Documents

Revision History

How to Contact Altera

Typographic CONVENtIONScccoiiiiiiiiiiiiiiiic s e 3
Altera Corporation 9.1 v

Nios Il C2H Compiler User Guide

Contents

Vi 9.1 Altera Corporation
Nios Il C2H Compiler User Guide

1. Introduction to the
C2H Compiler

The Nios® II C-to-Hardware Acceleration (C2H) Compiler is a tool that
allows you to create custom hardware accelerators directly from ANSI C
source code. A hardware accelerator is a block of logic that implements a
C function in hardware, which often improves the execution performance
by an order of magnitude. Using the C2H Compiler, you can develop and
debug an algorithm in C targeting an Altera® Nios II processor, and then
quickly convert the C code to a hardware accelerator implemented in a
field programmable gate array (FPGA).

The C2H Compiler improves the performance of Nios II programs by
implementing specific C functions as hardware accelerators. The

C2H Compiler is not designed to create arbitrary hardware systems from
C code. Rather, the C2H Compiler is a tool for generating a hardware
accelerator module, functionally identical to the original C function, that
offloads and enhances the performance of the Nios II processor.

User Guide This user guide comprises the following chapters:

Overview B Chapter 1, Introduction to the C2H Compiler provides a detailed
background on the C2H Compiler and the concepts required to use
it.

B Chapter 2, Getting Started Tutorial provides hands-on instructions
that teach you the first steps to begin using the C2H Compiler.

B Chapter 3, C-to-Hardware Mapping Reference provides reference on
how the C2H Compiler translates C constructs to hardware
structures.

B Chapter 4, Understanding the C2H View helps you use the C2H
view to get performance information and to control the compilation
of accelerators.

B Chapter 5, Accelerating Code Using the Nios II Software Build Tools
Command Line explains how to use the C2H Compiler with the
Nios® II software build tools.

B Chapter 6, Pragma Reference summarizes usage of all C2H #pr agna
directives.

B Chapter 7, ANSI C Compliance and Restrictions documents all
sections of the ANSI C specification that the C2H Compiler does not
support.

Altera Corporation 9.1 1-1
November 2009

Target Audience

Target Audience

Introduction

1-2

This user guide assumes you have at least a basic understanding of
hardware design for field programmable gate arrays (FPGAs). It also
assumes you are fluent in the C language and you have experience with
software design in C for microprocessors.

The C2H Compiler operates in conjunction with the following Altera
tools:

B Quartus II software for creating FPGA designs

B SOPC Builder system integration tool for creating Nios II processor
hardware systems

B C programming environments for the Nios II processor:
e Nios Il integrated development environment (IDE)
e Nios II software build tools

To benefit from this user guide, you do not need to be an expert in these
tools, and you do not need an understanding of any particular Altera
FPGA family. However, at least a basic understanding of each tool is
required to use the C2H Compiler practically.

This chapter introduces the Nios II C2H Compiler. The sections in this
chapter discuss the features, background, and principles of the

C2H Compiler, and describe the most appropriate types of C code for
acceleration. After reading this chapter, you will understand all the
concepts necessary to begin using the C2H Compiler.

Features

The C2H Compiler is founded on the following premises:

B ANSIC syntax is sufficient to describe computationally intensive or
memory access-intensive tasks.

B A C-to-hardware tool must not disrupt existing software and
hardware development flows.

Based on these premises, the C2H Compiler's design methodology
provides the following features:

B ANSI C compliance — The C2H Compiler operates on plain ANSI C
code, and supports most C constructs, including pointers, arrays,
structures, global and local variables, loops, and subfunction calls.
The C2H Compiler does not require special syntax or library
functions to specify the structure of the hardware. Unsupported
ANSI C constructs are documented.

9.1 Altera Corporation

Nios Il C2H Compiler User Guide November 2009

Introduction to the C2H Compiler

Altera Corporation
November 2009

B Straightforward C-to-hardware mapping — The C2H Compiler maps
each element of C syntax to a defined hardware structure, giving you
control over the structure of your hardware accelerator.

B Integration with C language development environments for the
Nios II processor, including the Nios II integrated development
environment (IDE), and the Nios II software build tools. You control
the C2H Compiler with the Nios II C development tools. You do not
need to learn a new environment to use the C2H Compiler.

B Based on SOPC Builder and Avalon system interconnect fabric — The
C2H Compiler uses SOPC Builder as the infrastructure to connect
hardware accelerators into Nios II systems. A C2H accelerator
becomes a component within an existing Nios II system. SOPC
Builder automatically generates system interconnect fabric to
connect the accelerator to the system, saving you the time of
manually integrating the hardware accelerator.

B Reporting of generated results — The C2H Compiler produces a
detailed report of hardware structure, resource usage, and
throughput.

Hardware accelerators generated by the C2H Compiler have the
following characteristics:

B Parallel scheduling — The C2H Compiler recognizes events that can
occur in parallel. Independent statements are performed
simultaneously in hardware.

B Direct memory access — Accelerators access the same memories that
the Nios II processor does during execution.

B Loop pipelining — The C2H Compiler pipelines the logic
implemented for loops, based on memory access latency and the
amount of code that operates in parallel.

B Memory access pipelining — The C2H Compiler pipelines memory
accesses to reduce the effects of memory latency.

Design Abstraction and the Rise of C for FPGAs

There is much interest in “C-to-gates” tools that promise a practical
method to create hardware logic directly from C code. However, early
attempts have had limited success gaining acceptance in the design
community. This section discusses the historical background of the
C2H Compiler, and looks at the questions “why is this methodology a
good idea?” and “why now?”

C compilers and FPGA design tools have evolved along separate paths,
but both are founded on the same premise: Higher levels of design
abstraction enable engineers to create designs of greater size and
complexity. Simultaneous with this evolution, Moore's law has delivered
chips of increasing density and complexity, such as FPGAs capable of

9.1 1-3
Nios Il C2H Compiler User Guide

Introduction

1-4

implementing entire systems on a chip. As a result, the tools available to
FPGA and software designers have undergone continual transformation
of design-entry methods and behind-the-scenes optimization techniques.
This transformation has enabled designers to create ever-bigger designs
to fill ever-growing chip capacity.

Recent years have seen the broad acceptance of FPGA-based
microprocessor cores, such as the Nios II processor, and system
integration tools, such as SOPC Builder. These tools made it possible, for
the first time, to implement C code easily in an FPGA-based system.
Optimizing and evolving these tools is a natural next step for C-based
design on FPGAs. This background sets the stage for practical advances
in C-to-hardware technologies based on an established design
methodology.

FPGA-based processors and system integration tools offer new ways to
improve the performance of embedded systems. Traditional methods to
increase performance of processor systems include:

B Increasing clock speed

B Upgrading to a processor with higher Dhrystone MIPS-per-
megahertz performance

B Coding critical sections of software in assembly language

FPGA-based processor systems enable additional optimization
techniques capable of achieving much higher performance gains. These
techniques include:

B The ability to rapidly alter the FPGA design, allowing you to
prototype a variety of architectures

B The ability to divide and conquer processing tasks by instantiating
multiple processor cores

B The ability to augment a processor with custom hardware that off-
loads processor-intensive operations into the FPGA fabric

B The ability to adjust memory architecture for memory-intensive
operations, such as using high-speed, point-to-point connections to
fast memory buffers

The application of these techniques relies on real-world tools to
implement them. Consequently, the acceptance of these techniques has
grown as system integration tools, such as Altera's SOPC Builder, have
matured and gained acceptance. It is a fortunate coincidence that these
techniques also directly benefit C-to-gates methodologies. Flexibility of
hardware architecture and ease of implementation are at the heart of the
appeal of C-to-gates tools.

9.1 Altera Corporation

Nios Il C2H Compiler User Guide November 2009

Introduction to the C2H Compiler

Altera Corporation
November 2009

The Nios II C-to-Hardware Acceleration (C2H) Compiler represents
Altera's next step in the evolution of embedded systems design. The
C2H Compiler uses the infrastructure provided by SOPC Builder and the
Nios II processor, and adds a higher level of abstraction: converting C
functions directly to hardware.

What to Expect From the C2H Compiler

The C2H Compiler is not designed to build all types of FPGA systems. It
is designed specifically to augment the performance of programs that run
on the Nios II processor; it does not replace the processor. Two notable
implications are:

B The C2H Compiler assumes that your C code runs successfully on a
Nios II processor system.

B The result of using the C2H Compiler is a program that runs on a
Nios II processor system.

The C2H Compiler works best on C code that adheres to certain
structural rules. It works well for many types of programs, but not all.
Through education and habit, programmers structure C programs with
an existing compiler in mind. Experienced designers learn the particular
structures that produce optimal compiled results. The C2H Compiler is
also a C compiler. It takes ANSI C programs that execute normally on a
processor. However, the program structure for producing optimal
hardware results with the C2H Compiler often differs from code
structured for execution on a processor. You achieve the best results if you
have a reasonable understanding of how the C2H Compiler translates C
structures to hardware. Refer to chapter Chapter 3, C-to-Hardware
Mapping Reference for details.

The C2H Compiler is not a replacement for traditional HDL-based
hardware design. Tasks such as connecting modules together and
interfacing to bus protocols are not easily inferred from ANSI C code. In
the hands of an experienced user, the C2H Compiler allows considerable
control over circuit latency and parallelism. However, it does not provide
the ability to define user logic with complex timing requirements. For
example, the C2H Compiler does not allow you to create an arbitrary
state machine that guarantees a particular operation on a specific clock
cycle.

Il=" The Nios II processor is little-endian. For Nios IT compatibility,
C2H accelerators expect to exchange little-endian data with the
processor. If your accelerator must handle big-endian data, you
can swap the byte order in the accelerated C code. Ensure that
the data is in little-endian form when your accelerated function
transfers it to any unaccelerated function.

9.1 1-5
Nios Il C2H Compiler User Guide

C2H Compiler Concepts

C2H Compiler
Concepts

1-6

C2H Support in Nios Il Tool Flows

The Nios II IDE is the preferred tool flow for developing Nios II C2H
programs. The Nios II IDE allows you to carry out the following
important tasks:

B Debug your function prior to accelerating

B Generate the accelerator and incorporate it into your hardware

B Test and profile your software and hardware with the C2H
accelerator

Altera recommends creating new C2H systems with the Nios II IDE.

For information about using the Nios II IDE, refer to the Using the Nios 11
Integrated Development Environment appendix to the Nios I Software
Developer’s Handbook, or to the Nios II IDE help system. For information
about Nios II tool flows, refer to “Development Flows for Creating Nios
II Programs” in the Overview chapter of the Nios II Software Developer’s
Handbook.

The Nios II Software Build Tools also provide command-line support for
pre-existing command-line C2H projects.

For information about using C2H on the command line, refer to
Chapter 5, Accelerating Code Using the Nios II Software Build Tools
Command Line.

'~ The Nios II Software Build Tools for Eclipse do not support the
C2H Compiler.

This section describes fundamental concepts underpinning the
C2H Compiler. These concepts help you better understand how the
C2H Compiler works and how you can produce optimal results.

Simplicity and Ease of Use

The C2H Compiler minimizes interruptions to existing design flows. The
flow to generate a hardware accelerator and link software for it uses the
familiar Nios I and SOPC Builder design tools. When you create a Nios II
software project, you specify which C function (or functions) compiles as
a hardware accelerator rather than instructions on a processor . The

9.1 Altera Corporation

Nios Il C2H Compiler User Guide November 2009

http://www.altera.com/literature/hb/nios2/n2sw_nii52001.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52002.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52002.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf

Introduction to the C2H Compiler

Altera Corporation
November 2009

C2H Compiler calls other tools in the background to handle the hardware
and software integration tasks. Specifically, the C2H Compiler
automatically performs the following tasks in the background:

1. Calls SOPC Builder to specify how the accelerator connects to the
system, and then generates the system hardware.

2. Calls the Quartus® II software to recompile the hardware design
and generate an SRAM object file (.sof).

Rapid Design lteration to Find Optimal Partitioning of
Hardware and Software

The C2H Compiler allows you to move the dividing line between
hardware and software easily in C code, without significant additional
design effort. As a result, you have the freedom to design iteratively, and
explore multiple architectures. By contrast, writing a hardware
accelerator by hand in a hardware description language (HDL) would
require a significant amount of time to create the logic design and
integrate it into the system. Changing the functional or performance
requirements of hand-written HDL blocks can significantly impact
design time.

With the C2H Compiler, you can accelerate as many functions as
necessary to achieve the desired performance. You can balance the trade-
off between performance and resource utilization with simple edits to the
C source.

With these tools available to you, the process of achieving desired system
performance undergoes a profound change: The balance of design time
shifts away from creating, interfacing, and debugging hardware in favor
of perfecting the algorithm implementation and finding the optimal
system architecture.

Accelerate Performance-Critical Sections of Code

The C2H Compiler converts only sections of code that you specify. A
typical program contains a mix of performance-critical code and other
code. Performance-critical sections are often iterative and simple, but
consume the majority of a program's execution time on a processor. They
might occupy the processor by either computing a value, moving data, or
both. The best use of hardware resources is to accelerate only the
performance-critical functions of a program, rather than converting an
entire program to hardware.

9.1 1-7
Nios Il C2H Compiler User Guide

C2H Compiler Concepts

1-8

The C2H Compiler Operates at the Function Level

Code you want to accelerate must be expressed as an individual C
function. The C2H Compiler converts all code within and below the
chosen function to a hardware accelerator block. If the function you are
accelerating calls a subfunction, the C2H Compiler also converts the
subfunction to a hardware accelerator. Therefore, you must be careful that
subfunctions are also good candidates for C2H acceleration.

If the code you want to accelerate is not isolated in a separate function, a
good practice is to partition the function to separate the critical section
into its own function. The resulting hardware accelerator then replaces
only processor-intensive tasks, rather than setup or control tasks which
the processor can implement efficiently.

9.1 Altera Corporation

Nios Il C2H Compiler User Guide November 2009

Introduction to the C2H Compiler

System Architecture
Figure 1-1 shows the architecture of a simple Nios II processor system
that includes one hardware accelerator.

Figure 1-1. Example System Topology with Single Hardware Accelerator

Nios Il Control
Processor : Hardware
Instruction Data i Acce'eralor
M M
i) Y M
: g é A
Avalon %
Switch raleals ok ol FRRRTURR i
Fabric R SO IR PO K
i.-----.l ---------------------------------------
i 2 ‘yy
\érbitrator/ \ Arbitrator/

A iy Py /
S S
Instruction . Data Data
Memory Peripherals Memory Memory

—p Write Data & Control Path
------ » Read Data

Altera Corporation
November 2009

SOPC Builder automatically integrates the accelerator logic into the
system as an SOPC Builder component. If there is more than one
accelerator in the system, multiple accelerators appear in SOPC Builder.
Accelerators are separate from the Nios II processor but can access the
same memory devices that the Nios II processor can.

1-9

9.1
Nios Il C2H Compiler User Guide

C2H Compiler Concepts

1-10

The accelerator's connections are managed by the C2H Compiler. You can
manually customize the connections using pragma directives in the
accelerated C code. Chapter 6, Pragma Reference, describes

C2H Compiler pragma usage. You cannot edit the accelerator's
connections in the SOPC Builder GUI

Generation of a Hardware Accelerator

The C2H compilation flow shares commonalities with a conventional C
compiler, but the scheduling of statements, optimization, and object
generation is different. When generating a hardware accelerator, the
C2H Compiler does the following;:

1. Runs the GNU GCC preprocessor to evaluate macros, includes, and
other preprocessing directives.

2. Parses code.

3. Creates a graph of data dependencies.

4. Performs some optimizations.

5. Determines the best sequence in which to perform each operation.

6. Generates an object file for the hardware accelerator. This object file
is a synthesizable HDL file.

7. Generates a C wrapper function that isolates and hides the details of
how the Nios II processor interacts with the hardware accelerator.
The wrapper function is a C file that replaces the original C function
at software link time.

The generated accelerator logic includes the following:

B One or more state machines that manage the sequence of operations
defined by the C function. On any clock cycle, an arbitrary number
of computations and memory accesses can happen simultaneously,
orchestrated by the state machines.

B One or more Avalon Memory-Mapped (Avalon-MM) master ports,
which fetch and store data as required by the state machines.

B An Avalon-MM slave port and a set of memory-mapped registers
that allow the processor to set up, start, and stop the accelerator.

9.1 Altera Corporation

Nios Il C2H Compiler User Guide November 2009

Introduction to the C2H Compiler

Altera Corporation
November 2009

The software wrapper, executing on the Nios II processor, controls the
accelerator by reading and writing the register interface. From the
perspective of the calling function, the result of calling the software
wrapper is functionally the same as calling the original C function. The
basic operation of the software wrapper is as follows:

1. Sets up parameters for the accelerator, similar to passing variables to
the original, unaccelerated function.

2. Optionally flushes the processor's data cache to avoid cache
coherency problems. Flushing the data cache might be necessary if
the accelerator accesses the same memory that the processor does.

3. Starts the accelerator. Once an accelerator is running, it can return a
value, terminate, or run continuously, depending on the design of
the C source code.

4. Polls registers in the accelerator hardware to determine when the
task completes.

5. If the function returns a result, reads the result value, and returns it
to the calling function.

One-to-One Mapping From C Syntax to Hardware Structure

The C2H Compiler maps each element of C syntax to an equivalent
hardware structure using straightforward translation rules that directly
instantiate hardware resources based on the input C code. Once familiar
with the C2H Compiler mappings, you can control the generated
hardware structure with simple changes to your C source.

The following are examples of how the C2H Compiler translates C to
hardware:

B Mathematical operators (such as +, -, * , >>) become direct hardware
equivalent circuits (such as add, subtract, multiply and shift circuits).
These circuits might be shared between operations, depending on
the degree of parallelism inherent in the C code.

B Loops (suchasf or,whil e, do-whi |) become state machines that
iterate over the operations inside the loop, until the loop condition is
exhausted.

B Pointer dereferences and array accesses (suchas*p,array[i][j])
become Avalon-MM master ports that access the same memory that
the processor does.

B Statements not dependent on the result of a previous operation are
scheduled as early as possible, allowing parallel execution to the
extent possible.

9.1 1-11
Nios Il C2H Compiler User Guide

C2H Compiler Concepts

1-12

B Subfunctions called within an accelerated function are also
converted to hardware using the same C-to-hardware mapping
rules. The C2H Compiler creates only one hardware instance of the
subfunction, regardless of how many times the subfunction is called
within the top-level function. Isolating accelerated C code into a
subfunction provides a method of creating a shared hardware
resource within an accelerator.

The C2H Compiler performs certain optimizations when it can reduce
logic utilization based on resource sharing.

Refer to Chapter 3, C-to-Hardware Mapping Reference for complete
details of the C2H Compiler mappings.

Performance Depends on Memory Access Time

Applications that run on a processor are typically compute-bound, which
means the performance bottleneck depends on the rate the processor
executes instructions. Memory access time affects the execution time, but
instruction and data caches minimize the time the processor waits for
memory accesses.

With C2H hardware accelerators, the performance bottleneck undergoes
a profound change: Applications typically become memory bound,
which means the performance bottleneck depends on the memory
latency and bandwidth. When multiple operations do not have data
dependencies that require them to execute sequentially, the

C2H Compiler schedules them in parallel. The resulting accelerator logic
often must access memory to feed data to each parallel operation. If the
hardware does not have fast access to memory, the hardware stalls
waiting for data, reducing the performance and efficiency.

Achieving maximum performance from a hardware accelerator often
involves examining your system's memory topology and data flow, and
making modifications to reduce or eliminate memory bottlenecks. For
example, if your C code randomly accesses a large buffer of data stored in
slow SDRAM, performance suffers due to constant bank switching in
SDRAM. You can alleviate this bottleneck by first copying blocks of data
to an on-chip RAM, and allowing the accelerator to access this fast, low-
latency RAM. Note that you can also accelerate the copy operation, which
creates a direct memory access (DMA) hardware accelerator.

9.1 Altera Corporation

Nios Il C2H Compiler User Guide November 2009

Introduction to the C2H Compiler

C Code
Appropriate for
Hardware
Acceleration

Altera Corporation
November 2009

This section describes guidelines for identifying code that is appropriate
for the C2H Compiler.

Ideal Acceleration Candidates

Sections of C code that consume the most CPU time with the least amount
of code are excellent candidates for acceleration. These tend to have the
following characteristics:

B They contain a relatively small and simple loop or set of nested
loops.

B They iterate over a set of data, performing one or more operations on
the data per iteration, and then store the result.

Examples of such iterative tasks include memory copy-and-modify tasks,
checksum calculations, data encryption, decryption, and filtering
operations. In each of these cases, the C code iterates over a set of data
many times, with either one or more memory reads or writes performed
during each iteration.

Example 1-1 demonstrates a routine that performs a checksum
calculation. This code excerpt is from a TCP/IP stack, and it calculates the
checksum over ranges of data in a network protocol stack. Checksum
calculations are typically a time-consuming part of an IP stack, because all
data transmitted and received must be validated, which requires the
processor to loop through all bytes.

9.1 1-13
Nios Il C2H Compiler User Guide

C Code Appropriate for Hardware Acceleration

Example 1-1. Checksum Calculation
ul6é_t standard_chksum(void *dataptr, int |en)

{

u32_t acc;
/* Checksum |l oop: iterate over all data in buffer */
for(acc = 0; len > 1; len -= 2)

acc += *(ul6_t *)dataptr;
dataptr = (void *)((ul6_t *)dataptr + 1);

}
/* Handl e odd buffer lengths */
if (len == 1)
{

acc += htons((ul6_t)((*(u8_t *)dataptr)&xff)<< 8);
}
/* Modify result for IP stack needs */

cc = (acc >> 16) + (acc & OxffffUL);
f ((acc & Oxffff0000) != 0)

QD

i
{
acc = (acc >> 16) + (acc & OxffffUL);
}
r

eturn (ul6_t)acc;

Accelerating this function could have a significant impact on execution
time, especially the amount of time spent in the f or loop. The remaining
code executes once per call to format the result and check boundary cases.
Accelerating the code outside the loop has little benefit, unless the entire
st andar d_chksun() function is a called from another function that is
also a good acceleration candidate. The most efficient hardware
accelerator for this code would replace only the f or loop. To accelerate
the f or loop only, you need to refactor the code to isolate the loop in a
separate function.

Poor Acceleration Candidates

Accelerating some code can have negative performance impacts, or can
unacceptably increase resource utilization, or both. Use the following
guidelines to identify functions not to accelerate:

B Code that contains many data or control dependencies must perform
many sequential operations, and is a poor candidate for acceleration.
A large number of dependencies makes it difficult for the
C2H Compiler to fully optimize loops. Processors are designed to
perform such operations efficiently.

1-14 9.1 Altera Corporation
Nios Il C2H Compiler User Guide November 2009

Introduction to the C2H Compiler

Altera Corporation
November 2009

If the code contains C syntax not supported by the C2H Compiler, it
cannot be accelerated. Examples are floating point operations and
recursive functions. Refer to Chapter 7, ANSI C Compliance and
Restrictions.

Code that calls system and runtime library functions is a poor
candidate for acceleration. For example, there is little point in
accelerating pri nt f () ormal | oc() . The underlying code contains
a complex set of sequential operations and does not contain
performance-critical loops.

Code that makes extensive use of global or external variables is a
poor candidate for acceleration. Each time the C2H accelerator uses
a global or external variable, it must access the Nios II processor’s
data memory, which is likely to cause a bottleneck.

There are exceptions to these guidelines. For example:

Experienced C coders often "unroll" iterative algorithms,
representing them as a sequential set of operations to work better
with an optimizing C compiler. If you can refactor the code and "roll
up" the loop, you might be able to create an efficient hardware
accelerator.

A critical inner loop might have a complex set of sequential
operations which, if accelerated in hardware, consumes a lot of logic
resources. This presents a trade-off: If the processor spends an
unacceptable amount of time in this loop, it might be worth the
hardware cost to accelerate the whole loop.

Some runtime library functions are iterative in nature. Examples
include common data movement functions and buffer set functions,
such as mencpy() or menset (). If your code calls one of these
functions, you might consider writing a simple, custom
implementation of the function, which you can then accelerate.

If your code uses global or external variables, it might be easy for you
to refactor it to be suitable for acceleration. Refactor your code to
copy the global or external variables to local storage, perform the
calculation with the local variables, and then copy results back to
global or external storage. The C2H Compiler implements local
variables as fast, pipelined registers inside of the accelerator.

Understanding Code to Find Opportunities for Acceleration

The best way to obtain optimal results with the C2H Compiler is to
understand your code, and know where the critical loops are. If you
wrote the program from scratch, you probably understand where the
critical sections of code are. If you are starting with an existing code base
that you want to accelerate, the C2H Compiler can benefit you to the

9.1 1-15
Nios Il C2H Compiler User Guide

Next Steps

extent that you analyze the code and understand it. In either case, the
Nios II IDE profiling features can help you determine where the
processor spends most of its time.

Examine the structure of the code for processor-specific or compiler-
specific optimizations written into the structure of the code. These
sections of code might result in poor performance with the

C2H Compiler, and could benefit from refactoring for the C2H Compiler.

It can be difficult to identify the critical loop just by inspecting code,
because programs often spend the majority of time iterating on just a few
lines of code. The only way to know exactly where the processor spends
the most time is to profile the application, and inspect the bottleneck
functions.

e Refer to AN 391: Profiling Nios II Systems for further information.

Next Ste ps Now that you understand the underlying concepts of the Nios II
C-to-Hardware Acceleration Compiler, you are ready for hands-on
experience accelerating designs. Chapter 2, Getting Started
Tutorialdescribes the C2H Compiler design flow, and gives step-by-step
instructions to accelerate your first design. Altera also provides tutorials
and application notes to deepen your understanding of the
C2H Compiler.

P Refer to the Nios II literature page for further C2H Compiler
documentation: www.altera.com/literature/lit-nio2.jsp.

1-16 9.1 Altera Corporation
Nios Il C2H Compiler User Guide November 2009

http://www.altera.com/literature/an/an391.pdf
www.altera.com/literature/lit-nio2.jsp

2. Getting Started Tutorial

Introduction This chapter describes the design flow for the Nios® I C-to-Hardware
Acceleration (C2H) Compiler. This chapter provides a design example
and gives you a step-by-step tutorial to guide you through the process of
creating your first hardware accelerator.

The example software design performs multiple iterations of a data-copy
function. By accelerating the data-copy function, you achieve more than
a 10-fold improvement in the execution performance. The resulting
hardware accelerator resembles a hardware block with direct memory
access (DMA) to copy data without processor intervention.

This tutorial assumes that you are familiar with the Nios II processor and
the Nios II design flow.

«o Forintroductory information on designing with the Nios II processor,
refer to the Nios II Hardware Development Tutorial available on the Altera
Nios II literature page at http://www.altera.com/literature/lit-nio2.jsp,
and to the Nios II Software Development Tutorial available in the Nios I
integrated development environment (IDE) help system.

C2H Com p iler This section discusses the design flow to create a hardware accelerator

Design FIOW with the C2H Compiler.
Starting Point for the C2H Compiler Design Flow

The design flow for the C2H Compiler starts with one or more C files that
compile successfully targeting the Nios II processor. Before you accelerate
a function with the C2H Compiler, you must:

B Identify the functions that require acceleration.

B Debug the functions first targeting the Nios II processor. After
accelerating a function, you can no longer debug individual C
statements within the function.

You might have existing C code that you need to accelerate to improve
performance. Alternatively, you might develop and debug a function in
C with the explicit purpose of converting it to hardware. In either case,
you achieve the best results if the C code is structured for the

C2H Compiler. To start with, you can accelerate your code as-is, and
determine if the results meet the design requirements.

Altera Corporation 9.1 2-1
November 2009

http://www.altera.com/literature/tt/tt_nios2_hardware_tutorial.pdf
http://www.altera.com/literature/lit-nio2.jsp
http://www.altera.com/literature/lit-nio2.jsp

Typical Design Flow

Typical Design

Flow

2-2

A typical design flow using the C2H Compiler to accelerate a function
involves the following steps:

1. Develop and debug your application or algorithm in C targeting a
Nios II processor system.

2. Profile the code to identify the areas that would benefit from
hardware acceleration.

3. Isolate the code you want to accelerate into an individual C
function.

4. Specify the function you want to accelerate in the Nios II IDE.
5. Rebuild the project in the Nios II IDE.

6. Profile the results in hardware, or observe estimates from the C2H
report in the Nios I IDE.

7. If the results do not meet the design requirements, modify the C
source code and system architecture (for example, the memory

topology).
8. Return to Step 5, and iterate.

The typical C2H Compiler design flow is an iterative process of
accelerating a function, comparing the performance to design
requirements, and modifying C code to improve results. If you start with
C code that is not optimized for the C2H Compiler, the first iteration of
acceleration might not dramatically improve performance. Further
iterations, modifying the C code for optimal hardware structure, often
improve the final results significantly over the first pass results.

This tutorial does not describe techniques for optimizing hardware
accelerator performance. For further information on optimizing

C2H Compiler results, refer to the Accelerating Nios II Systems with the
C2H Compiler Tutorial.

Software Requirements

The C2H Compiler in evaluation mode is installed as part of the Altera®
Quartus® I Complete Design Suite. You can download the Quartus II
Complete Design Suite free from the Altera website. Visit
www.altera.com and click Download.

9.1 Altera Corporation

Nios Il C2H Compiler User Guide November 2009

http://www.altera.com/literature/tt/tt_nios2_c2h_accelerating_tutorial.pdf
http://www.altera.com/literature/tt/tt_nios2_c2h_accelerating_tutorial.pdf
http://www.altera.com/literature/tt/tt_nios2_c2h_accelerating_tutorial.pdf
www.altera.com

Getting Started Tutorial

During the design process with the C2H Compiler, you use the following
tools:

Nios II Integrated Development Environment (IDE) — You control
acceleration options for individual functions in the Nios II IDE. The
results of accelerating functions are reported in the Nios II IDE. The
output is an executable linking file (.elf) targeting a Nios Il CPU. The
C2H Compiler also invokes SOPC Builder and optionally the
Quartus II software in the background to regenerate the Nios II
system and update the SRAM object file (.sof).

SOPC Builder — SOPC Builder manages the generation of C2H logic
and Avalon-MM system interconnect fabric to connect hardware
accelerators to the processor. During the software build process, the
Nios I IDE can invoke SOPC Builder in the background to update
the hardware accelerators when necessary and integrate them into
the Nios Il hardware design. The output is a set of hardware
description language (HDL) files (.v or .vhd) and an SOPC Builder
system file (.sopcinfo) defining your system: Nios II processor cores,
peripherals, accelerators, on-chip memory, and interfaces to off-chip
memory.

Quartus II software — The Quartus II software compiles and
synthesizes HDL produced by the C2H Compiler and SOPC Builder
tools, along with any other custom logic in your Quartus II project.
During the software build process, the Nios II IDE can invoke the
Quartus II software in the background to recompile the Quartus II
project. The output is a .sof file that includes the updated Nios II
system with accelerators.

OpenCore Plus Evaluation

Hardware accelerator blocks generated by the C2H Compiler support
OpenCore®Plus evaluation. OpenCore Plus evaluation allows you to use
the C2H Compiler and evaluate the performance of hardware
accelerators in real systems before purchasing a license for the tool. With
Altera's free OpenCore Plus evaluation feature, you can:

Altera Corporation
November 2009

Verify the functionality of your design, as well as evaluate its size
and speed easily

Generate time-limited device programming files for designs that
include megafunctions

Program an FPGA and verify your design in hardware

Simulate the behavior of an accelerator in your system

9.1 2-3
Nios Il C2H Compiler User Guide

Tutorial

Tutorial

2-4

OpenCore Plus hardware evaluation supports the tethered mode of
operation for C2H. In tethered mode the accelerator runs indefinitely, as
long as the target board remains connected to the host computer by an
Altera download cable

You need to purchase a license for the Nios II C-to-Hardware
Acceleration Compiler only when you are completely satisfied with the
functionality and performance of your accelerated Nios II system, and
want to take your design to production.

For more information on OpenCore Plus hardware evaluation, see
AN 320: OpenCore Plus Evaluation of Megafunctions.

This section guides you through the steps to accelerate a function using
the C2H Compiler. You create a new software project in the Nios II IDE
using the provided example design files, accelerate a function, and
observe the performance improvement.

This tutorial guides you through the steps to implement the example
design. These steps start with a C source file and end with a running
application that includes an accelerated function. The steps you perform
are described in the following sections:

1. “Setup the Hardware for the Project” on page 2-5

2. “Create the Software Project” on page 2—-6

3. “Run the Project as Software Only” on page 2-7

4. “Create and Configure a Hardware Accelerator” on page 2-8

5. “Rebuild the Project” on page 2-10

6. “Observe Results in the Report File” on page 2-11

7. "“Observe the Accelerator in SOPC Builder” on page 2-14

Tutorial Design

The hardware design for this tutorial is based on the standard hardware
example design provided with the Nios II EDS. The software design is a
C file named dma_c2h_tutorial.c, which is available for download from
the Altera website. You can run the tutorial design on any Nios
development board available from Altera.

9.1 Altera Corporation

Nios Il C2H Compiler User Guide November 2009

http://www.altera.com/literature/an/an320.pdf

Getting Started Tutorial

Altera Corporation
November 2009

You can download dma_c2h_tutorial.c from the Nios II literature page.
The file is located next to this document (Nios II C2H Compiler User
Guide) on the Altera Nios II literature page at http://www.altera.com/
literature/lit-nio2.jsp.

The file dma_c2h_tutorial.c includes two functions:

B do_dma() - This is the function you accelerate. It performs a block
memory copy. do_dma() takes a source address pointer, a
destination address pointer, and an integer number of bytes to copy.
When implemented in hardware, do_dnma() resembles DMA copy
logic. The prototype for do_dma() is as follows:

int do_dma(int * __restrict__ dest_ptr,
int * __restrict__ source_ptr, int length)

The __restrict__ qualifier informs the compiler that the
pointers dest _ptr and sour ce_pt r point to mutually exclusive
address ranges. For further information about the __restrict__
qualifier, see “Pointer Aliasing” on page 3-32 of Chapter 3, C-to-
Hardware Mapping Reference.

® main() —mai n() callsdo_dma() and measures the amount of time
taken, so that you can compare the software implementation with the
hardware accelerator.

mai n() performs the following actions:

Allocates two 1 MB buffers in main memory

Fills the source buffer with incrementing values

Fills destination buffer with all 0x0.

Calls the do_dma() function 100 times

Checks the copied data to ensure there were no errors
Frees the two allocated buffers

AR NS

To measure the time it takes for the copy operations to complete, there are
timer routines around the loop that calls the do_dna() function. After
the application runs, the number of milliseconds that were spent
performing the copy operations is displayed to the Console view in the
Nios IT IDE.

Set up the Hardware for the Project

To set up the hardware for the tutorial, perform the following steps:

1. Connect your Nios development board to power, and connect the
board to your host computer with an Altera download cable.

9.1 2-5
Nios Il C2H Compiler User Guide

http://www.altera.com/literature/lit-nio2.jsp

Tutorial

2-6

Nios Il C2H Compiler User Guide

Set up the hardware project directory

a. Using a file management tool on the host computer, locate the
standard hardware example design for your Nios development
board. For example, on a Windows PC, use Windows Explorer
to find the Verilog HDL design files for the Nios development
board, Cyclone® II Edition at <Nios II EDS install path>/
examples/verilog/ niosII_cyclonell_2c35/standard.

b. Copy the standard directory and name the copied directory

c2h_tutorial_hw. This new directory serves as the hardware
design for the tutorial.

Start the Quartus II software.

Open the Quartus II project standard.qpf located in the
c2h_tutorial_hw directory.

The Quartus II software might give a warning "Do you want to
overwrite the database ... created by Quartus II Version <version>...
The database format is compatible..." if the project was created with
an earlier version of the software. If so, click Yes to update the
database.

Configure the FPGA on the Nios development board.
a. On the Tools menu click Programmer. The Programmer

appears, with the SRAM object file standard.sof automatically
ready to download to the FPGA.

b. Turn on the Program/Configure check box for standard.sof.

c. Click Start. The programmer downloads the configuration data
to the FPGA.
(& If Start is not enabled, click Hardware Setup to configure
your JTAG download cable.

Create the Software Project

To set up the software project for the tutorial, perform the following steps.

Start the Nios II IDE.

If the Workspace Launcher dialog box appears, click OK to accept
the default workspace.

9.1 Altera Corporation
November 2009

Getting Started Tutorial

Altera Corporation
November 2009

If the Welcome to the Altera Nios II IDE page displays, close it to
view the workbench.

Create a new C/C++ Application project.

a. On the File menu, point to New and click C/C++ Application.
The New Project wizard appears.

b. Inthe Name box, type c2h_tut ori al _sw
c. Inthe Select Project Template list, select Blank Project.

d. Use the Select Target Hardware settings to browse to and select
the SOPC Builder system (.ptf) file in your c2h_tutorial _hw
directory. After you specify the SOPC Builder system, the IDE
automatically sets the CPU setting to cpu, which is the name of
the only Nios II processor core available in this SOPC Builder
system.

e. Click Finish. The IDE generates a new project c2h_tutorial_sw
and a new system library project c2h_tutorial_sw_syslib.

Download the software file dma_c2h_tutorial.c from the Nios II
literature page and save it to a known location on your host
computer. The file is located next to this document (Nios II C2H
Compiler User Guide) on the Altera Nios II literature page at http://
www.altera.com/literature/lit-nio2.jsp.

Import the C file dma_c2h_tutorial.c into the c2h_tutorial_sw
project. The easiest way to do this is to use an external file
management tool, such as Windows Explorer, and drag the file onto
the c2h_tutorial_sw project folder in the C/C++ Projects view of the
Nios II IDE.

Run the Project as Software Only

In this section, you build and run the project as a software-only
implementation, and observe the time required to run the program. To
run the program, perform the following steps:

1.

In the C/C++ Projects view, right-click the c2h_tutorial_sw project,
point to Run As and click Nios I Hardware. The Nios I IDE takes a
few minutes to build and run the program.

9.1 2-7
Nios Il C2H Compiler User Guide

http://www.altera.com/literature/lit-nio2.jsp

Tutorial

Observe the execution time in the Console view. Example 2-1 shows
results of approximately 86000 milliseconds. The results you see
might be different, depending on the memory characteristics of the
target board and the clock speed of the example design.

Example 2-1. Execution Results as Software-0Only Implementation

This sinple programcopi es 1048576 bytes of data froma source buffer to a

destination buffer.

The program perforns 100 iterations of the copy operation, and cal cul ates

the time spent.

Copy begi nni ng

SUCCESS: Source and destination data match. Copy verified.

Total tinme: 86520 ns

Create and Configure a Hardware Accelerator

In this section, you create an accelerator for the do_dma() function. To
create the hardware accelerator, perform the following steps:

1.

4.

2-8

Nios Il C2H Compiler User Guide

Open the dma_c2h_tutorial.c source file in the Nios II IDE editor, if
it is not already open.

In the source file, double-click the name of the do_dma() function
to select it.

Right-click do_dma and click Accelerate with the Nios II
C2H Compiler. The C2H view appears in the bottom pane of Nios II
IDE.

In this example, for simplicity, the do_dma() function exists in
the same file as the rest of the application code. However, a good
practice is to isolate functions for acceleration into a separate C
file. The project makefile cannot determine specifically what
part of a file has changed. As a result, if an accelerated function
coexists in the same file with other unaccelerated code, the
C2H Compiler is forced to rebuild the accelerator, even if you
edit unrelated code.

Set the build options for the new accelerator, as shown in Figure 2-1.

a. Click the + icon to expand c2h_tutorial_sw in the C2H view.

9.1 Altera Corporation
November 2009

Getting Started Tutorial

Turn on Build software, generate SOPC Builder system, and
run Quartus II compilation. When you build the project in the
Nios II IDE, this option causes the C2H Compiler to invoke
SOPC Builder and the Quartus II software in the background to
generate a new .sof file.

Quartus II compilations can take a long time. You only need
to turn on this option when you want to update the .sof file.
You must regenerate the .sof file after you make changes
that affect one or more hardware accelerators, and you want
to run a program on the hardware system.

Expand do_dma() in the C2H view.

Under do_dmal), select Use hardware accelerator in place of
software implementation. Flush data cache before each call.
At run time, this option causes the program to activate the
accelerator hardware for do_dna() . With this option, the C2H
wrapper function flushes the processor data cache before
activating the accelerator.

[l=~ The wrapper function needs to flush the data cache before

activating the hardware accelerator if the processor has a
data cache and if the processor writes to the same memory
that the accelerated function operates on. Failing to flush
the cache might result in cache coherency problems.

Figure 2-1. Setting the Build Options for the Accelerator

Problems | Console | Properties m =8

=-1= c2h_tutarial_sw {Debug)

Use the existing accelerators
Analyze all accelerators

®000CO0

= [2= do_dmai)
[B ise hardware accelerator in
O Use hardware accelerator in

Use software implementation for all accelerators

Build software and generate SOPC Builder system
Build software, generate SOPC Builder system, and run Quartus IT compilation

O Use software implementation
& Build report cannot be displayed, Build the project,

Jg -

Refresh

place of software implementation, Flush data cache before each call,
place of software implementation

Altera Corporation
November 2009

9.1 2-9
Nios Il C2H Compiler User Guide

Tutorial

2-10

Nios Il C2H Compiler User Guide

Rebuild the Project

To rebuild the project, perform the following step:

v/ In the C/C++ Projects view, right-click ¢2h_tutorial_sw and click
Build Project.

'~ The rebuild process can take over 20 minutes, depending on
your computer's performance and the target FPGA.

In the background, the Nios II IDE performs the following tasks:

1. Launches the C2H Compiler to analyze the do_dma() function,
generates the hardware accelerator, and generates the C wrapper
function.

2. Invokes SOPC Builder to connect the accelerator into the SOPC
Builder system. The build process modifies the SOPC Builder
system file (.ptf) in the Quartus II project directory to include the
new accelerator as a component in the system.

3. Invokes the Quartus Il software to compile the hardware project and
regenerate the .sof file.

4. Rebuilds the C/C++ application project and links the accelerator
wrapper function into the application.

Progress messages display in the Console view. The build process creates
the following files:

B accelerator_c2h_tutorial_sw_do_dma.v (or .vhd) — This file is the
HDL code for the accelerated function. It is stored in the Quartus II
project directory, and the name follows the format accelerator_<IDE
project name>_<function name>. This file is not visible in the Nios II
IDE.

B alt_c2h_do_dma.c - This file is the C2H accelerator driver file,
containing the wrapper function for the accelerator. It is located in
software project's Debug or Release directory, and the name follows
the convention alt_c2h_<function name>.c. (If you use the Nios I
software build tools, these files are located in your software
application directory.)

B c2h_accelerator_base_addresses.h — This is the C2H accelerator
base addresses header file. It is located in the same directory as
alt_c2h_<function name>.c.

9.1 Altera Corporation
November 2009

Getting Started Tutorial

Altera Corporation
November 2009

If you copy or move a C2H project to a different directory, you
must make sure you have the generated C source files and C2H
makefile fragments in the new location. If you regenerate your
accelerator in the new location, the C2H Compiler recreates
these files for you. This is the simplest way, although not the
fastest, to ensure that you have these files.

If you want to avoid regenerating, simply copy or move the two
files when you copy or move your original C source files. Copy
or move the files, alt_c2h_<function_name>.c and
c2h_accelerator_base_addresses.h, to the subdirectory in the
new project location corresponding to their original location.

Observe Results in the Report File

The C2H Compiler produces a detailed build report in the C2H view. The
build report contains information about accelerator performance and
resource utilization, which you can use to optimize your C code for the
C2H Compiler. This section introduces the main features of the report file.

Inspect the report by performing the following steps:

1.

2.

=

3.

Click the C2H view in the Nios II IDE. You can double click the C2H
tab to view the report in full-screen mode.

In the C2H view, expand c2h_tutorial_sw, do_dma(), Build report.

For designs with multiple accelerators, a build report appears
under each function listed in the C2H view.

Expand the Glossary section. This section defines the terminology
used in the rest of the report.

9.1 2-11
Nios Il C2H Compiler User Guide

Tutorial

4. Expand the Resources section and all subsections, as shown in
Figure 2-2.

Figure 2-2. Resource Section of the C2H Build Report

Problems | Console | Properties m =8

= [2= do_dmai) ~
@ Use hardware accelerator in place of software implementation. Flush data cache before each call,
(O Use hardware accelerator in place of software implementation
O Use software implementation
== Build report
+-[= Summary
+- [Glossary
== Resources

+- 2= Performance b

I -

Refresh

+- 1 About Resources
=2 The accelerated Function requires 2 Masters,
+- 1 About Avalon master port
=7 Master Resource 0
HDL name: accelerator_czh_tutorial_sw_do_dma_master_resourcel
Data width: 32
=z 1 dereference operation
i This section lists the dereference operations mapped to the Avalon master port resource.:
+- 2= pointer "source_ptr" line 15
=22 Slave connection
i This section lists the Avalon slave ports connected ta the Avalon master port resource:
Avalon slave name: ext_ram_bus/avalon_slave
Avalon slave name: onchip_ram_64_kbytesis1
Avalon slave name: sdram/s1
+- 7= Master Resource 1

2-12

The Resources section lists all the master ports on the hardware
accelerator. Each master port corresponds to a pointer dereference in the
source code. In this example, there are two master ports: one for
dereferencing the read pointer, * sour ce_pt r, and one for dereferencing
the write pointer, *dest _ptr.

9.1 Altera Corporation

Nios Il C2H Compiler User Guide November 2009

Getting Started Tutorial

5. Expand the Performance section and all subsections, as shown in
Figure 2-3.

Figure 2-3. Performance Section of the C2H Build Report

Problems | Console | Properties m =8

& -
Refresh
= [2= do_dmai) ~
@ Use hardware accelerator in place of software implementation. Flush data cache before each call,
(O Use hardware accelerator in place of software implementation
O Use software implementation

== Build report

¥
¥
¥

== Surnmary
= Glossary
= Resources
= Performance
-~ 1 About Performance
: The performance section provides CPLI and latency information For each loop in the
+ accelerated function,
: see glossary section For CPLI and latency
=-[>= The accelerated function contains 1 loop,
== file:..fdma_c2h_tutorial.c ine:14 Loop CPLI=1
Loop latency : 13
== Cycles per loop iteration {CPLI) : 1
Critical loop variable: i
+-[2= Assignments in critical path
== Scheduling information per assignment
i Scheduling information per assignment: Lists starting and ending state of all assignments in the lo
assignment at line 15 : * dest_ptr ++ = * source_ptr ++ ; state 0 ---> 12
assignment at line 14 ;i ++ : state 0 --—-> 1
assignment control at line 142 i < {length [/ 4)) state 1 > 2
=I-[>= Scheduling information per state
i Scheduling information per state: lists all active assignments for each state
== skate O
line 141§ ++
line 15: * dest_ptr ++ = * source_ptr ++
+ [~ skate 1
+ [~ skate 2

LT ckaba T

Altera Corporation
November 2009

The Performance section shows the performance characteristics of each
loop in the accelerated function. There are two metrics that determine a
loop's performance: loop latency and cycles per loop-iteration (CPLI).
Loop latency is the number of cycles required to fill the pipeline. CPLI is
the number of cycles required to complete one iteration of the loop,
assuming the pipeline is filled and no stalls occur. For example, consider
the case of an accelerated function with one loop with loop latency of 13
and CPLI value of 1. (These values can differ, depending on the memory
latency on your target board.) These numbers indicate that the pipeline
takes 13 cycles to fill; once the pipeline is filled, the pipeline generates a
new result every cycle.

In general, the goal of optimizing an application for better
accelerator performance is to reduce loop latency and CPLL

9.1 2-13
Nios Il C2H Compiler User Guide

Tutorial

2-14

For further information on optimizing C2H Compiler results, refer to the
Accelerating Nios II Systems with the C2ZH Compiler Tutorial.

Observe the Accelerator in SOPC Builder

After the C2H Compiler adds the hardware accelerator to your SOPC
Builder system, the accelerator appears in SOPC Builder.

To look at the newly-added accelerator in your SOPC Builder system,
perform the following steps:

1.

2.

CAUTION

Return to the Quartus II window.

On the Tools menu click SOPC Builder... to open SOPC Builder.
On the System Contents tab in SOPC Builder, notice the new
component accelerator_c2h_tutorial_sw_do_dma, located at the

bottom of the table of active components.

Close SOPC Builder.

You cannot modify the accelerator from within SOPC Builder.
You must use the Nios II IDE interface to remove or alter it.

Close SOPC Builder while building projects in the Nios II IDE
with the C2H Compiler. The C2H Compiler modifies the SOPC
Builder system in the background. If SOPC Builder is open
while you build a Nios ITIDE project with C2H accelerators, the
system displayed in the SOPC Builder window can become out-
of-date.

If you inadvertently leave SOPC Builder open while building an
accelerator with the C2H Compiler, be sure to close the SOPC
Builder system file without saving it. If you save the out-of-date
file, you overwrite your accelerator-enhanced system file.

Run the Project with the Accelerator

You are now ready to run the accelerated project. Perform the following

steps:

1.

2.

Nios Il C2H Compiler User Guide

Return to the Quartus II window, if it is not already open.

Configure the FPGA with the new .sof file that contains the
accelerator.

9.1 Altera Corporation
November 2009

http://www.altera.com/literature/tt/tt_nios2_c2h_accelerating_tutorial.pdf

Getting Started Tutorial

a. If the Programmer window is not still open, on the Tools menu
click Programmer. The Programmer window lists the file
standard.sof.

b. Turn on the Program/Configure box for standard.sof.

= If you don't have a license for the C2H Compiler, the Quartus II
software generates a time-limited .sof file with a different name.
In this case, select standard.sof and click Delete, then click Add
and open the time-limited .sof file.

c. Click Start. The programmer downloads the new configuration
data to the FPGA.

3. Return to the Nios II IDE window.

4. Inthe C/C++ Projects view, right-click the c2h_tutorial_sw project,
point to Run As and click Nios II Hardware. The Nios II IDE
downloads the accelerated program to the board and runs it.

5. Observe the execution time in the Console view. Example 2-2 shows
timing results of approximately 8470 milliseconds. The results you
see might be different, depending on your target board.

Example 2-2. Execution Results with Hardware Acceleration

Thi s sinple programcopi es 1048576 bytes of data froma source buffer to a
destination buffer.

The programperforns 100 iterations of the copy operation, and cal cul ates
the time spent.

Copy begi nni ng
SUCCESS: Source and destination data match. Copy verified.
Total time: 8470 ns

Remove the Accelerator

You can remove an accelerator from a design by performing the following
steps in the Nios II IDE.

1. Right-click the function name in the C2H view and click Remove
C2H Accelerator, as shown in Figure 2—4.

Altera Corporation 9.1 2-15
November 2009 Nios Il C2H Compiler User Guide

Next Steps

2. Rebuild the project in the Nios II IDE.

= You must rebuild the project to remove the hardware
accelerator from the SOPC Builder system hardware.

Figure 2-4. Removing a C2H Accelerator

Problems | Console | Properties Mrogress

=-1=% c2h_tutorial_sw {Release)
O Use software implementation for all accelerators
(O Use the existing accelerators
O Analyze all accelerators
O Build software and generate SOPC Builder system
@ Build software, generate SOPC Builder system, and run Quartus IT compilati

@ Usel . Re 2H Accelerator L are implementation, Flush da
O Use larawes T pECeorseRgaar e implementation

== Build report

Removing the accelerator removes the hardware accelerator component
from the SOPC Builder project, and replaces the C2H software wrapper
with the original, unaccelerated function. The next time you build the
project in the Nios II IDE, the C2H Compiler regenerates the SOPC
Builder system and recompiles the Quartus II project to generate a .sof
file without the accelerator hardware.
I'=~ Toremove an accelerator from the hardware system, you must
use the Remove C2H Accelerator command in the Nios II IDE.
Do not use SOPC Builder to manually delete the component
from the system. If you delete the component from the SOPC
Builder system using the SOPC Builder GUI, the C2H Compiler
produces undefined results the next time you build the software
project.

N e xt ste ps Congratulations! You have successfully converted an ANSI C function to
a hardware accelerator using the C2H Compiler and observed a
significant performance increase.

After accelerating a function and running it for the first time, your next

steps vary depending on your system requirements. If your starting goal
is to off-load a routine from the processor to reduce CPU load, you might
find that no additional action is required. If the hardware accelerator does
not meet performance or resource requirements, you can perform one or

2-16 9.1 Altera Corporation
Nios Il C2H Compiler User Guide November 2009

Getting Started Tutorial

Altera Corporation
November 2009

more iterations of optimization to produce better results. In either case,
you can continue developing your system software and hardware, and
the accelerator remains in place.

'~ Itis common to be able to improve first-pass performance
results significantly by optimizing the C code and system
architecture.

If you modify the accelerated C code, the Nios II IDE automatically
regenerates the accelerator hardware with the C2H Compiler the next
time you build the C/C++ application project. Alternatively, you can
disable an accelerator after it is built and relink the original software
implementation, while leaving the hardware accelerator inactive in the
hardware.

To get a better understanding of how the C2H Compiler translates C to
hardware, read Chapter 3, C-to-Hardware Mapping Reference. After
that, for further information on optimizing C2H Compiler results, refer
to the Accelerating Nios II Systems with the C2H Compiler Tutorial.

9.1 2-17
Nios Il C2H Compiler User Guide

http://www.altera.com/literature/tt/tt_nios2_c2h_accelerating_tutorial.pdf
http://www.altera.com/literature/tt/tt_nios2_c2h_accelerating_tutorial.pdf
http://www.altera.com/literature/tt/tt_nios2_c2h_accelerating_tutorial.pdf

Next Steps

2-18 9.1 Altera Corporation
Nios Il C2H Compiler User Guide November 2009

3. C-to-Hardware Mapping
Reference

This chapter describes how the Nios® II C-to-Hardware Acceleration
(C2H) Compiler translates ANSI C constructs into functional blocks in a
hardware accelerator. Understanding the C-to-hardware mappings
enables you to write C functions optimized for the C2H Compiler to
achieve higher performance and