
August 2010 Altera Corporation

AN-440-2.0 Application Note

Subscribe

© 2010 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, 
QUARTUS and STRATIX are Reg. U.S. Pat. & Tm. Off. and/or trademarks of Altera Corporation in the U.S. and other countries. 
All other trademarks and service marks are the property of their respective holders as described at 
www.altera.com/common/legal.html. Altera warrants performance of its semiconductor products to current specifications in 
accordance with Altera’s standard warranty, but reserves the right to make changes to any products and services at any time 
without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or 
service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest 
version of device specifications before relying on any published information and before placing orders for products or services.

101 Innovation Drive
San Jose, CA 95134
www.altera.com

Accelerating Nios II Networking
Applications

This application note describes key optimizations you can use to accelerate the 
performance of your Nios® II networking application. In addition, this document 
describes how the different parts of a Nios II Ethernet-enabled system work together, 
how the interaction of these parts corresponds to the total networking performance of 
the system, and how to benchmark the system.

Ethernet is a standard data transport paradigm for embedded systems across all 
applications because it is cheap, abundant, mature, and reliable.

Downloading the Ethernet Acceleration Design Example
The Nios II ethernet acceleration design example is an integral part of this application 
note. The design example shows how these acceleration techniques can be applied in 
a real working Nios II system. The readme.doc file, located in the design example 
folder, provides additional hands-on instructions demonstrating how to implement 
these acceleration techniques in a Nios II system. The readme.doc file also provides 
performance benchmark results.

f You can find the Nios II ethernet acceleration design example on the Nios II Ethernet 
Acceleration Design Example page of the Altera website.

Download the design example file, and unzip the file into a working directory. 

The Structure of Networking Applications
This section describes the different parts of a general networking application.

Ethernet System Hierarchy
Figure 1 shows the flow of information from an embedded networking application to 
the Ethernet.

Figure 1. The Ethernet System Hierarchy

http://www.altera.com/common/legal.html
http://www.altera.com
https://www.altera.com/servlets/subscriptions/alert?id=AN-440
http://www.altera.com/support/examples/nios2/exm-ethernet-acceleration.html
http://www.altera.com/support/examples/nios2/exm-ethernet-acceleration.html


Page 2 The Structure of Networking Applications

Accelerating Nios II Networking Applications August 2010 Altera Corporation

The structure presented in Figure 1 shows a typical embedded networking system. In 
general, a user application performs a job that defines the goal of the embedded 
system, such as controlling the speed of a motor or providing the UI for an embedded 
kiosk. The networking stack provides the application with an application 
programming interface (API), usually Sockets, to send networking data to and from 
the embedded system.

The stack itself is a software library that converts data from the user application into 
networking packets, and sends the packets through the networking device. 
Networking stacks tend to be very complicated software state machines that must be 
able to send data using a wide variety of networking protocols, such as address 
resolution protocol (ARP), transmission control protocol (TCP), and user datagram 
protocol (UDP). These stacks generally require a significant amount of processing 
power.

The stack uses the Ethernet device to move data across the physical media. Most of a 
networking stack’s interaction with the networking device consists of shuttling 
Ethernet packets to and from the Ethernet device.

You must consider the link layer, or physical media over which the Ethernet 
datagrams travel, when constructing a network enabled system. Depending on the 
location of the embedded system, the Ethernet datagrams might traverse a wide 
variety of physical links, such as 10/100 Mbit twisted pair and fiber optic. 
Additionally, the datagrams might experience latency if they traverse long distances 
or need to pass through many network switches in order to arrive at their destination.

Relationships Between Networking System Elements
The total throughput performance of an embedded networking system is highly 
dependent on the interaction of the user application, networking stack, Ethernet 
device (and driver), as well as the physical connection for the networking link. 
Making substantial performance improvements in the network throughput often 
depends on optimizing the performance of all these elements simultaneously.

In general, your networking application has some criteria for performance that are 
either achieved or not. However, a good first order approximation for determining the 
viability of your networking application is to remove the user application from the 
system and measure the total networking performance. This method provides you 
with an upper bound for total network performance, which you can use to create your 
networking application. This application note uses a simple benchmark program that 
determines the raw throughput rate of TCP and UDP data transactions. This 
benchmark application does very little apart from sending or receiving data through 
the networking stack. It therefore provides us with a good approximation of the 
maximum networking performance achievable.



The User Application Page 3

August 2010 Altera Corporation Accelerating Nios II Networking Applications

Finding the Performance Bottlenecks
A wide variety of tools is available for analyzing the performance of your Nios II 
embedded system and finding system bottlenecks. In this application note, many of 
the techniques presented to increase overall system (and networking) performance 
were discovered through the use of the following tools:

■ GNU Profiler

■ Timer Peripheral IP Core

■ Performance Counter IP Core

f This application note does not explore the use of these tools or how they were applied 
to find networking bottlenecks in the system. For more information about finding 
general performance bottlenecks in your Nios II embedded system, refer to AN 391: 
Profiling Nios II Systems.

The User Application
In an embedded networking system, the application layer is the part of the system 
where your key task is performed. In general, this application layer performs some 
work and then uses the network stack to send and receive data. In a classic embedded 
networking system, your application executes on the same processor as the network 
stack, and competes with it for computation resources.

To increase the throughput of your networking system, decrease the time your 
application spends completing its task between the function calls it makes to the 
networking stack. This technique has a twofold benefit. First, the faster your 
application runs to completion before sending or receiving data, the more function 
calls it can make to the networking stack (Sockets API) to move data across the 
network. Second, if the application takes less of the processor’s time to run, the more 
time the processor has to operate the networking stack (and networking device) and 
transmit the data.

User Application Optimizations
This section describes some effective ways to decrease the amount of time your 
application uses the Nios II processor.

http://www.altera.com/literature/an/an391.pdf
http://www.altera.com/literature/an/an391.pdf


Page 4 The User Application

Accelerating Nios II Networking Applications August 2010 Altera Corporation

Software Optimizations
■ Compiler Optimization Level—Compile your application with the highest 

compiler optimization possible. Higher optimizations result in denser, faster code, 
increasing the computational efficiency of the processor.

■ MicroC/OS-II Thread Priority—Make sure that your application task has the 
right MicroC/OS-II priority level assigned to it. In general, the higher the priority 
of the application, the faster it runs to completion. Balance the application’s 
priority levels against the priority levels assigned to the NicheStack’s core tasks, 
discussed in “Structure of the NicheStack Networking Stack” on page 7.

1 This suggestion assumes that your application uses Altera’s recommended 
method for operating the NicheStack Networking Stack, which requires 
using the MicroC/OS-II operating system.

Hardware Optimizations
■ Processor Performance—You can increase the performance of the Nios II 

processor in the following ways:

■ Computational Efficiency—Selecting the most computationally efficient 
Nios II processor core is the quickest way to improve overall application 
performance. The following Nios II processor cores are available, in decreasing 
order of performance:

■ Nios II/f—optimized for speed

■ Nios II/s—balances speed against usage of on-chip resources

■ Nios II/e—conserves on-chip resources at the expense of speed

■ Memory Bandwidth—Using low-latency, high speed memory decreases the 
amount of time required by the processor to fetch instructions and move data. 
Additionally, increasing the processor’s arbitration share of the memory 
increases the processor’s performance by allowing the Nios II processor to 
perform more transactions to the memory before another Avalon master port 
can assume control of the memory.

■ Instruction and Data Caches—Adding an instruction and data cache is an 
effective way to decrease the amount of time the Nios II processor spends 
performing operations, especially in systems that have slow memories, such as 
SDRAM or double data rate (DDR) SDRAM. In general, the larger the cache 
size selected for the Nios II processor, the greater the performance 
improvement.



The User Application Page 5

August 2010 Altera Corporation Accelerating Nios II Networking Applications

■ Clock Frequency—Increasing the speed of the processor’s clock results in 
more instructions being executed per unit of time. To gain the best performance 
possible, ensure that the processor’s execution memory is in the same clock 
domain as the processor, to avoid the use of clock-crossing FIFOs.

One of the easiest ways to increase the operational clock frequency of the 
processor and memory peripherals is to use a FIFO bridge IP core to isolate the 
slower peripherals of the system. With this peripheral, the processor, memory, 
and Ethernet device are connected on one side of the bridge. On the other side 
of the bridge are all of the peripherals that are not performance dependent. The 
optimized Ethernet design, included Nios II ethernet acceleration design 
example, uses a FIFO bridge for this reason.

■ Hardware Acceleration—Hardware acceleration can provide tremendous 
performance gains by moving time-intensive processor tasks to dedicated 
hardware blocks in the system. The most common ways to accelerate application 
level algorithms are as follows:

■ Custom Instruction—Offload the Nios II processor by using hardware to 
implement a custom instruction.

■ Custom Peripheral—Create a block of hardware that performs a specific 
algorithmic task, as a peripheral controlled by the Nios II processor.

f For more information about hardware optimizations, refer to the Avalon 
Memory-Mapped Design Optimizations and Hardware Acceleration and Coprocessing 
chapters of the Embedded Design Handbook.

The Sockets API
After tuning your application to become more computationally efficient (thereby 
freeing more of the processor’s time for operating the networking stack), you can 
optimize how the application uses the networking stack. This section describes how 
to select the best protocol for use by your application and the most efficient way to use 
the Sockets API.

Selecting the Right Networking Protocol

When using the Sockets API, you must also select which protocol to use for 
transporting data across the network. There are two main protocols used to transport 
data across networks: TCP and UDP. Both of these protocols perform the basic 
function of moving data across Ethernet networks, but they have very different 
implementations and performance implications. Table 1 compares the two protocols. 

Table 1. The UDP and TCP Protocols

Parameter
Protocol

UDP TCP

Connection Mode Connectionless Connection-Oriented

In Order Data Guarantee No Yes

Data Integrity and Validation No Yes

Data Retransmission No Yes

Data Checksum Yes; Can be disabled Yes

http://www.altera.com/literature/hb/nios2/edh_ed51006.pdf
http://www.altera.com/literature/hb/nios2/edh_ed51007.pdf
http://www.altera.com/literature/hb/nios2/edh_ed51007.pdf


Page 6 The User Application

Accelerating Nios II Networking Applications August 2010 Altera Corporation

In terms of just throughput performance, the UDP protocol is much faster than TCP 
because it has very little overhead. The UDP protocol makes no attempt to validate 
that the data being sent arrived at its destination (or even that the destination is 
capable of receiving packets), so the network stack needs to perform much less work 
in order to send or receive data using this protocol.

However, aside from very specialized cases where your embedded system can 
tolerate losing data (for example, streaming multimedia applications), use the TCP 
protocol.

1 Design Tip: Use the UDP protocol to gain the fastest performance possible; however, 
use the TCP protocol when you must guarantee the transmission of the data.

Improving Send and Receive Performance

Proper use of the Sockets API in your application can also increase the overall 
networking throughput of your system. Following are several ways to optimally use 
the Sockets API:

■ Minimize send and receive function calls—The Sockets API provides two sets of 
functions for sending and receiving data through the networking stack. For the 
UDP protocol these functions are sendto() and recvfrom(). For the TCP protocol 
these functions are send() and recv().

Depending on which transport protocol you use (TCP or UDP), your application 
uses one of these sets of functions. To increase overall performance, avoid calling 
these functions repetitively to handle small units of data. Every call to these 
functions incurs a fixed time penalty for execution, which can compound quickly 
when these functions are called multiple times in rapid succession. Combine data 
that you want to send (or receive) and call these functions with the largest possible 
amount of data at one time.

1 Design Tip: Call the Socket API’s send and receive functions with larger 
buffer sizes to minimize system call overhead.

■ Minimize latency when sending data—Although the TCP Sockets send() 
function can accept an arbitrary number of bytes, those bytes might not be 
immediately sent as a packet. This situation is especially likely when send() is 
called with a small number of bytes, because the networking stack attempts to 
coalesce these small data chunks into a larger packet. Small data chunks are 
coalesced to avoid congesting the network with many small packets (using the 
Nagle Algorithm for congestion avoidance). There is a solution, however, through 
the use of the TCP_NO_DELAY flag.

Setting a socket’s TCP_NO_DELAY flag, with the setsockopt() function call, disables 
the Nagle Algorithm. The socket immediately sends whatever bytes are passed in 
as a TCP packet. Disabling the Nagle Algorithm can be a useful way to increase 
network throughput in the case where your application must send many small 
chunks of data very quickly.

1 Design Tip: If you need to accelerate the transmission of small TCP 
packets, use the TCP_NO_DELAY flag on your socket. You can find an example 
of setting the TCP_NO_DELAY flag in the benchmarking application software 
in the Nios II ethernet acceleration design example.



Structure of the NicheStack Networking Stack Page 7

August 2010 Altera Corporation Accelerating Nios II Networking Applications

1 While disabling the Nagle Algorithm usually causes smaller packets to be 
immediately sent over the network, the networking stack might still 
coalesce some of the packets into larger packets. This situation is especially 
likely in the case of the Windows workstation platform. However, you can 
expect the networking stack to do so with much lower frequency than if the 
Nagle Algorithm were enabled.

The Zero Copy API

The NicheStack networking stack provides a further optimization to accelerate the 
data transfers to and from the stack called the Zero Copy API. The Zero Copy API 
increases overall system performance by eliminating the buffer management scheme 
performed by the Socket API’s read and write function calls. The application manages 
the send and receive data buffers directly, eliminating an extra level of data copying 
performed by the Nios II processor.

This application note does is not discuss details of performance optimization with the 
Zero Copy API. Refer to the “Appendix” on page 18 for pointers to more information.

1 Design Tip: Using the NicheStack Zero Copy API can accelerate your network 
application’s throughput by eliminating an extra layer of copying.

Structure of the NicheStack Networking Stack
The NicheStack networking stack is a highly configurable software library designed 
for communicating over TCP/IP networks. The version that Altera ships in the Nios II 
Embedded Design Suite (EDS) is optimized for use with the MicroC/OS-II (RTOS), 
and includes device driver support for the Altera® Triple Speed Ethernet MegaCore 
function, which serves as the media access control (MAC).

The NicheStack networking stack is extremely configurable, with the entire software 
library utilizing a single configuration header file, called ipport.h.

General Optimizations
Because this application note focuses on a single Nios II system, most of the 
optimizations described in “User Application Optimizations” on page 3 also improve 
the performance of the NicheStack networking stack. The following optimizations 
also help increase your overall network performance.

Software optimizations:

■ Compiler Optimization Level

Hardware optimizations:

■ Processor Performance

■ Computational Efficiency

■ Memory Bandwidth

■ Instruction/ Data Caches

■ Clock Frequency



Page 8 Structure of the NicheStack Networking Stack

Accelerating Nios II Networking Applications August 2010 Altera Corporation

NicheStack Specific Optimizations
This section describes the targeted optimizations that you can use to increase the 
performance of the NicheStack networking stack directly.

NicheStack Thread Priorities
Altera’s version of the NicheStack networking stack relies on the MicroC/OS-II 
operating system’s threads to drive two critical tasks to properly service the 
networking stack. These tasks (threads) are tk_nettick, which is responsible for 
timekeeping, and tk_netmain, which is used to drive the main operation of the stack.

When building a NicheStack-based system in the Nios II EDS, the default run-time 
thread priorities assigned to these tasks are: tk_netmain = 2 and tk_nettick = 3. These 
thread priorities provide the best networking performance possible for your system. 
However, in your embedded system you might need to override these priorities 
because your application task (or tasks) run more frequently than these tasks. 
Overriding these priorities, however, might result in performance degradation of 
network operations, as the NicheStack networking stack has fewer processor cycles to 
complete its tasks.

Therefore, if you need to increase the priority of your application tasks above that of 
the NicheStack tasks, make sure to yield control whenever possible to ensure that 
these tasks get some processor time. Additionally, ensure that the tk_netmain and 
tk_nettick tasks have priority levels that are just slightly less than the priority level of 
your critical system tasks.

When you yield control, the MicroC/OS-II scheduler places your application task 
from a running state into a waiting state. The scheduler then takes the next ready task 
and places it into a running state. If tk_netmain and tk_nettick are the higher priority 
tasks, they are allowed to run more frequently, which in turn increases the overall 
performance of the networking stack.

1 Design Tip: If your MicroC/OS-II based application tasks run with a higher priority 
level (lower priority number) than the NicheStack tasks, remember to yield control 
periodically so the NicheStack tasks can run. Tasks using the NicheStack services 
should call the function tk_yield(). If they do not use the NicheStack services, the 
tasks should call the function OSTimeDly().

Disabling Nonessential NicheStack Modules
Because the NicheStack networking stack is highly configurable, many modules are 
available for you to optionally include. Some examples are an FTP client, an FTP 
server, and a web server. Every module included in your system might result in some 
performance degradation due to the overhead associated with having the Nios II 
processor service these modules. 

This degradation can happen because the main NicheStack task, tk_netmain 
periodically polls each of these modules. Also, these modules might insert time-based 
callback functions, which further decrease the overall performance of the networking 
stack.



Structure of the NicheStack Networking Stack Page 9

August 2010 Altera Corporation Accelerating Nios II Networking Applications

You can control what is enabled or disabled in the NicheStack networking stack 
through a series of macro definitions in the ipport.h configuration file. In addition, the 
NicheStack software component inserts some definitions in the system.h file 
belonging to the board support package (BSP). A list of NicheStack features and 
modules to disable, which can increase system performance, follows. (To disable a 
particular feature or module, ensure that its #define statement is present in neither 
the ipport.h file nor the system.h configuration file.)

The NicheStack features to disable include the following:

■ IN_MENUS—enable NicheTool command interface

■ NPDEBUG—enable debugging aids

■ MEM_WRAPPERS—debugging aid to validate memory

■ QUEUE_CHECKING—debugging aid to validate memory queues

■ MULTI_HOMED—not needed if only one networking device

■ IP_ROUTING—not needed if only one networking device

The NicheStack modules to disable include the following:

■ PING_APP—enable ping support 

■ UDPSTEST, TCP_ECHOTEST—enable echotest programs

■ FTP CLIENT, FTP SERVER—enable FTP client/server

■ TELNET_SVR—enable Telnet server

■ USE_SYSLOG_TASK—enable statistics collection

■ SMTP_ALERTS—enable email client

■ INCLUDE_SNMP—enable simple network management protocol (SNMP) server

■ DNS_SERVER—enable domain name system (DNS) server

1 Design Tip: Disabling unused NicheStack networking stack features and modules in 
your system helps increase overall system performance.

1 The NicheStack networking stack also supports a wide variety of features and 
modules not listed here. Refer to the NicheStack documentation and your ipport.h file 
for more information.

Using Faster Packet Memory
You can increase the performance of the NicheStack networking stack by using fast, 
low-latency memory for storing Ethernet packets. This section describes this 
optimization and explains how it works.



Page 10 Structure of the NicheStack Networking Stack

Accelerating Nios II Networking Applications August 2010 Altera Corporation

Background

The NicheStack networking stack uses a memory queue to assemble and receive 
network packets. To send a packet, the NicheStack removes a free memory buffer 
from the queue, assembles the packet data into it, and passes this buffer memory 
location to the Ethernet device driver. To receive the data, the Ethernet device driver 
removes a free memory buffer, loads it with the received packet, and passes it back to 
the networking stack for processing. The NicheStack networking stack allows you to 
specify where its queue of buffer memory is located and how this memory allocation 
is implemented. 

By default, the Altera version of the NicheStack networking stack allocates this pool 
of buffer memory using a series of calloc() function calls that use the system’s heap 
memory. Depending on the design of the system, and where the Nios II system 
memory is located, this allocation method could impact overall system performance. 
For example, if your Nios II processor’s heap segment is in high latency or slow 
memory, this allocation method might degrade performance.

Additionally, in the case where the Ethernet device utilizes direct memory access 
(DMA) hardware to move the packets and the Nios II processor is not directly 
involved in transmitting or receiving the packet data, then this buffer memory must 
exist in an uncached region. Lack of buffer caching further degrades the performance 
because the Nios II processor’s data cache is not able to offset any performance issues 
due to the slow memory.

The solution is to use the fastest memory possible for the networking stacks buffer 
memory, preferably a separate memory not used by the Nios II processor for 
programmatic execution.

Solution

The ipport.h file defines a series of macros for allocating and deallocating big and 
small networking buffers. The macro names begin with BB_ (for “big buffer”) and LB_ 
(for “little buffer”). Following is the block of macros with the definitions in place for 
Triple Speed Ethernet device driver support.

#define BB_ALLOC(size) ncpalloc(size)
#define BB_FREE(ptr) ncpfree(ptr)
#define LB_ALLOC(size) ncpalloc(size)
#define LB_FREE(ptr) ncpfree(ptr)

You can use these macros to allocate and deallocate memory any way you choose. The 
Nios II ethernet acceleration design example redefines these macros to allocate 
memory from MRAM memory (a fast memory structure inside the FPGA). This faster 
memory results in various degrees of performance increase, depending on the system. 
For detailed performance improvement figures, please refer to the readme.doc file 
included in the design example.

1 The Altera version of NicheStack does not use the BB_FREE() or LB_FREE() function 
calls. Therefore, any memory allocated with the BB_ALLOC() and LB_ALLOC() function 
calls is allocated at run time, and is never freed.

1 Design Tip: Using fast, low latency memory for NicheStack’s packet storage can 
improve the overall performance of the system.



Structure of the NicheStack Networking Stack Page 11

August 2010 Altera Corporation Accelerating Nios II Networking Applications

Accelerating the Packet Checksum
The network checksum is a critical bottleneck to increasing the overall networking 
performance of the system. However, by using a custom hardware peripheral to 
accelerate the network checksum, you can increase the system’s networking 
performance.

Background

Ethernet networks use a checksum routine for guaranteeing the validity of 
transmitted data. This checksum is applied to the IP header, and is also used by the 
Internet control message protocol (ICMP), Internet group management protocol 
(IGMP), UDP, and TCP protocols for their own data headers and data.

The checksum operates by taking the 1’s complement sum of the data octets of the 
packet (including the checksum field), where each octet is paired to form a 16-bit 
operand. When data is transmitted, the checksum field is set to all 0’s, the 1’s 
complement sum is taken of all the 16-bit coupled octets, and the 1’s complement of 
the resultant value is stored in the checksum field. When packet data is received, 
however, the 1’s complement sum is taken of all the 16-bit coupled octets (including 
the checksum field). If the result is equal to all 0’s, the packet is valid.

While the algorithm performed by this checksum does not appear very 
computationally intensive, the effect of running this checksum on every sent or 
received packet, and their respective protocol data sections, can have the aggregate 
effect of degrading overall networking performance. Because of this potential 
degradation, checksum routines are often written in hand-optimized assembly code, 
as they are in the NicheStack networking stack. However, you can achieve further 
performance gains by accelerating the checksum algorithm implementation with a 
custom checksum hardware peripheral. 

Optimizing the Packet Checksum

In the NicheStack networking stack, you can configure the checksum routine by 
setting a macro in the ipport.h configuration file, as follows:

#define cksum <function you want to call for the checksum>

You can set this macro to install any checksum implementation you want. 

However, Altera’s version of the NicheStack networking stack contains additional 
source code to enable three different checksums for experimentation and 
benchmarking (C source, Nios II assembly language, and hooks for a custom 
hardware checksum peripheral). You can find more information about how to 
incorporate a custom hardware checksum peripheral in the readme.doc file, including 
detailed instructions. readme.doc is in the Nios II ethernet acceleration design 
example.

1 Design Tip: Accelerating the performance of the network checksum routine, using 
dedicated hardware resources on the FPGA, can greatly accelerate overall network 
performance.



Page 12 Ethernet Device

Accelerating Nios II Networking Applications August 2010 Altera Corporation

Super Loop Mode
Although the Altera-supported version of the NicheStack networking stack requires 
MicroC/OS-II for its operation, you can configure the stack to run without an 
operating system. In this mode of operation, MicroC/OS-II is replaced by an infinite 
loop that services the stack and runs the user application.

Removing the MicroC/OS-II operating system from your system can result in slightly 
higher networking performance, but this improvement comes at the expense of 
additional complexity in the software design of your system. It is very easy to create 
pathological systems where your application code consumes all of the processor’s 
time, and without frequent calls to a stack servicing function, the effective networking 
performance deteriorates.

Although the Super Loop system is another possible method of optimization, this 
application note does not attempt to benchmark it. You can find information about 
how to create a Super Loop system in the NicheStack reference manuals (mentioned 
in the “Appendix” on page 18).

1 Design Tip: You can use the NicheStack networking stack without the MicroC/OS-II 
operating system. Doing so can provide additional networking performance benefits. 
However, Altera does not support this configuration.

Ethernet Device
An important parameter in the total performance of your Ethernet application is the 
function and capabilities of the network interface device itself. The function of this 
device is to translate the physical Ethernet packets into datagrams that can be 
accessed by the stack. Therefore its performance is critical to the overall performance 
of your networking application.

Link Speed
For most embedded networking applications, the network physical layer is composed 
of either 100BASE-TX or 1000BASE-T Ethernet, which uses twisted copper wires for 
the transport medium. The maximum data transport rate (in one direction) for 
100BASE-TX is 100 Mbits/sec, while 1000BASE-T can accommodate 1000 Mbits/sec.

It is very difficult for an embedded networking device to completely use a 100 Mbit 
link, much less a 1000 Mbit link. However, a faster link provides better performance 
most of the time, because the 1000 Mbit link has a larger overall carrying capacity for 
data. The improvement is especially noticeable in cases where several different 
devices share the link and use it simultaneously.



Ethernet Device Page 13

August 2010 Altera Corporation Accelerating Nios II Networking Applications

Network Interface (Altera Triple Speed Ethernet MegaCore Function)
The Nios II EDS supports the Altera Triple Speed Ethernet MegaCore function. The 
Triple Speed Ethernet MegaCore function’s role is essentially to translate an 
application’s Ethernet data into physical bits on the Ethernet link. The Triple Speed 
Ethernet MegaCore function supports 10/100/1000 Mbit networks. Table 2 lists the 
key design parameters that impact network performance.

The Triple Speed Ethernet MegaCore function is capable of sending and receiving 
Ethernet data quickly because of the Scatter-Gather DMA peripherals. The Triple 
Speed Ethernet MegaCore function also allows you to select from a flexible range of 
send and receive FIFO depths.

NicheStack Device Driver Model
The NicheStack networking stack presents a simplified device driver model for 
integrating Ethernet devices, and the Altera Triple Speed Ethernet MegaCore function 
solution is fully optimized to support this model.

In the Triple Speed Ethernet MegaCore function device driver, the Scatter-Gather 
DMA peripherals are responsible for the movement of the Ethernet packet data to and 
from the Triple Speed Ethernet MegaCore function. 

The Scatter-Gather DMA peripherals can operate much more efficiently than the 
Nios II processor for data movement operations (on a per clock basis), and therefore 
using the Triple Speed Ethernet MegaCore function device driver results in an overall 
performance increase in the system. 

f For information about the Triple Speed Ethernet MegaCore function, refer to the Triple 
Speed Ethernet User Guide. For information about the Scatter-Gather DMA peripheral, 
refer to the Embedded Peripherals IP User Guide.

Table 2. Triple Speed Ethernet MegaCore Function

Parameter Altera Triple Speed Ethernet MegaCore 
Function

Type FPGA IP

Control Interface Avalon-MM

Data Interface Avalon-ST

Data Width (bits) 8, 32

Supported Link Speeds (Mbits/sec) 10/100/1000

Recv FIFO Depth 64 Bytes to 256 Kbytes

Send FIFO Depth 64 Bytes to 256 Kbytes

DMA Altera Scatter-Gather DMA (required)

PHY Interface (Integrated) None

PHY Interface (External)
MII (100 Mbits/sec),

GMII (1000 Mbits/sec)

http://www.altera.com/literature/ug/ug_ethernet.pdf
http://www.altera.com/literature/ug/ug_ethernet.pdf
www.altera.com/literature/ug/ug_embedded_ip.pdf


Page 14 Benchmarking Setup, Results and Analysis

Accelerating Nios II Networking Applications August 2010 Altera Corporation

Benchmarking Setup, Results and Analysis
The previous sections have described several optimizations that you can use to 
increase the performance of a networking system. This section describes a method to 
evaluate the effectiveness of each one. The best way to evaluate the optimizations is to 
use a benchmarking application that measures the impact of applying each 
optimization. 

Overview
A simple benchmarking application measures the overall networking performance. 
This application enables you to measure the Ethernet data transfer rate between two 
systems, such as an Altera development board and a workstation using the TCP or 
UDP protocols.

During a benchmarking test, one machine assumes the role of the sender and the 
other machine becomes the receiver. The sender opens a connection to the receiver, 
transmits a specified amount of data, and prints out a throughput measurement in 
Mbits/sec. Likewise, the receiver waits for a connection from the sender, begins 
receiving Ethernet data, and at the end of the data transmission prints out the total 
throughput in Mbits/sec.

The benchmarking application has the simplest possible structure. Both the sender 
and receiver parts of the program perform no additional work apart from sending and 
receiving Ethernet data. Additionally, for standardization purposes, all network 
operations use the industry standard Sockets API in their implementation.

1 You can find more information about the benchmarking program, including detailed 
information about how to build and operate it, in the readme.doc file in the Nios II 
ethernet acceleration design example.

Test Setup
The benchmarking tests were conducted between a workstation and an Altera 
development board. The workstation used was a Dell Optiplex GX280 workstation 
running the Windows XP Professional operating system, with two Pentium 4 
(3.2GHz) processors. The Altera development board used was a Stratix® IV GX 
development board. The workstation was lightly loaded, meaning that the only user 
applications running were the benchmark program and the Nios II Software Build 
Tools (SBT) for Eclipse.

The direct Ethernet connection between the two systems was implemented using a 
single twisted-pair networking cable.

Test Systems
The benchmarking analysis demonstrates how changing key parameters in an 
Ethernet system can lead to radical performance changes. 

This benchmark test examines the merits of applying various optimizations to both 
the Nios II processor and the NicheStack networking stack. The first parameter tested 
is the effect of doubling the instruction and data cache sizes for the processor. The 
second parameter tested is the effect of increasing the Nios II processor’s clock 
frequency.



Benchmarking Setup, Results and Analysis Page 15

August 2010 Altera Corporation Accelerating Nios II Networking Applications

The test also measures the effect of applying various hardware optimizations to the 
NicheStack networking stack. These optimizations include the use of a hardware 
checksum (custom hardware peripheral), the use of fast internal memory for packet 
storage, and the use of a combination of these optimizations. The test makes 
measurements for these cases and for the case in which neither of the two listed 
optimizations is implemented.

Test Methodology
This section describes the parameters used in the benchmarking tests.

Ethernet Link Type 
The Ethernet link selected to connect the workstation to the Nios II board uses a single 
100/1000 Mbit cable in a point-to-point configuration (no hub or switch). This choice 
mitigates the potential effects of an additional piece of networking hardware on the 
test system.

In most networking applications, however, your system can be connected to another 
host through one (or more) Ethernet hubs or switches. These extra connections can 
increase the communication latency. The benchmark numbers present the idealized 
performance of an almost perfect Ethernet connection.

Protocols Tested
All benchmark operations are conducted using the TCP protocol. The TCP protocol 
guarantees that all data sent by the transmitter arrives at the receiver, ensuring that 
the throughput numbers reported are legitimate.

The benchmark application can measure UDP transmission speeds, but does so 
without accounting for lost or missing Ethernet packets. Therefore, the UDP test only 
measures the speed at which the transmitter can send all of the data using the UDP 
protocol, without considering whether the data arrived at the receiver.

Data Transmission Sizes
This series of tests uses a total data size of 100 megabytes (100,000,000 bytes). This 
data size increases the total amount of time spent in the course of the test, to more 
clearly capture the average performance of both the sender and receiver.

Furthermore, the tests use the largest TCP payload size for Ethernet packet 
transmission (1458 bytes). This payload size provides an upper bound of Ethernet 
performance, representing the best expected performance numbers achievable in the 
design.

1 Because the benchmarking application uses the Sockets API, the payload size (1458 
bytes) directly maps to the length parameter in the send() (TCP) and sendto() (UDP) 
function calls. Following is an example of a send() function call in TCP:

send(int <socket>, const void *<buffer>, size_t <length>, int <flags>);



Page 16 Benchmarking Setup, Results and Analysis

Accelerating Nios II Networking Applications August 2010 Altera Corporation

Test Runs
For every Nios II configuration, the test measures the data transmission time and 
average data throughput with the Nios II system as both the sender and the receiver. 
The tests take three consecutive measurements and record the average of these runs as 
the final measurement. 

Nios II System Software Configuration
The benchmark application uses Altera’s recommended structure for Nios II 
NicheStack-based applications. The application relies on the MicroC/OS-II and 
NicheStack Sockets API for operation. The following configurations were applied to 
all test systems.

NicheStack Networking Stack Configuration
The NicheStack networking stack is built with the default configuration. This 
configuration provides a minimal set of general purpose functionality to enabled 
networking operations using the TCP and UDP protocols.

Additionally, the following MicroC/OS-II thread priorities were selected for the two 
core NicheStack tasks:

■ tk_netmain = priority 2

■ tk_nettick = priority 3

MicroC/OS-II Configuration
The default MicroC/OS-II configuration is used for the operation of the networking 
stack. This configuration provides all the basic MicroC/OS-II services.

Benchmark Application
The benchmark application uses the Sockets API. The configuration for the 
application is as follows:

■ benchmark application = priority 4

■ benchmark initialization thread = priority 1

1 You can find more information on the benchmark application and its operation in the 
Nios II ethernet acceleration design example.

General Application and System Library Settings
Both the benchmark application and the associated system library were compiled 
using the Nios II GNU tool chain with the -03 optimization enabled. If the test cases 
involve any changes to the run-time memory, the entire memory would be selected 
for the application’s binary segments, such as .text, .data, and .bss.



Nios II Test Hardware and Test Results Page 17

August 2010 Altera Corporation Accelerating Nios II Networking Applications

Workstation System Software
The workstation benchmark application is compiled using the GNU tool chain for the 
Cygwin environment, targeting the x86 architecture. Because the workstation 
benchmark application reuses much of the same source code base as the Nios II 
application, it uses the Sockets API for conducting this test.

Nios II Test Hardware and Test Results
For details regarding the Nios II test hardware and test results, see the readme.doc file 
included in the Nios II ethernet acceleration design example.

Conclusion
As seen in the empirical benchmark results, you can obtain minor performance 
increases in your Ethernet system by applying a single hardware optimization; 
however, achieving significant Ethernet performance increases involves applying 
several hardware optimizations together in the same system. 

Consider using the following optimizations for your Ethernet system, in decreasing 
order of importance:

■ DMA engine for moving data to and from the Ethernet device

■ Increasing the overall system frequency, including components such as the 
processor, DMAs, and memory

■ Using low-latency memory for Nios II software execution

■ Using a custom hardware peripheral to accelerate the network checksum

■ Using fast packet memory to store Ethernet data

Finally, the overall performance you seek from your Ethernet application depends on 
the nature of the application itself. This application note provides you with general 
techniques to accelerate Nios II Ethernet applications, but the final measure of success 
is whether your application meets the performance goals you establish.



Page 18 Appendix

Accelerating Nios II Networking Applications August 2010 Altera Corporation

Appendix

General Information for TCP/IP Networking
The following resources were used in the construction of this application note, and 
can provide you with more information regarding Ethernet, the TCP/IP protocol, and 
the Sockets API:

■ General information:

■ Comer, Douglas E., and Stevens, David L., Internetworking With TCP/IP 
Volume III: Client-Server Programming and Applications, Linux/POSIX Socket 
Version, Prentice Hall, 2000

■ Stevens, Richard, UNIX Network Programming, Volume 2, Second Edition: 
Interprocess Communications, Prentice Hall, 1999

■ Ibid., UNIX Network Programming, Volume 1, Second Edition: Networking APIs: 
Sockets and XTI, Prentice Hall, 1998

■ You can find more information about Altera’s tools and technology on the 
Literature and Technical Documentation page of the Altera website.

NicheStack Documentation

f For more information about using Super Loop mode and the Zero Copy API, refer to 
the NicheStack TCP/IP Stack documentation in the doc31.zip file located in the 
<Nios II EDS install path>/components/altera_iniche/UCOSII/31src directory.

Additional NicheStack Information
The NicheStack TCP/IP Networking stack is a software library licensed by Altera 
from InterNiche Technologies. If you are interested in licensing the NicheStack 
networking stack for use in your Nios II application, check the terms and conditions
at the Nios II Networking Solutions page of the Altera website.

The version of the NicheStack networking stack distributed by Altera provides you 
with basic TCP/IP networking functionality. If your application requires additional 
application modules, or protocol support, visit the InterNiche website 
(www.iniche.com) for more information.

Additional Network Technology Solutions
The device driver support included in the Altera version of the NicheStack 
networking stack supports the Altera Triple Speed Ethernet MegaCore function. 
Additional networking device IP is available on the Intellectual Property & Reference 
Designs page of the Altera website.

http://www.altera.com/literature/lit-index.html
http://www.altera.com/products/ip/processors/nios2/tools/embed-partners/ni2-network-stack.html
http://www.iniche.com/
http://www.altera.com/products/ip/ipm-index.html
http://www.altera.com/products/ip/ipm-index.html


Document Revision History Page 19

August 2010 Altera Corporation Accelerating Nios II Networking Applications

Document Revision History
Table 3 shows the revision history for this document.

Table 3. Document Revision History

Date Version Changes

August 2010 2.0

■ Update for Release 10.0

■ Remove C2H, replace with custom hardware peripheral component

■ Remove LAN91C111

■ Move test results table to the readme.doc file, included with the Nios II ethernet 
acceleration design example

June 2009 1.1 Revised benchmarking data

May 2007 1.0 Initial release.



Page 20 Document Revision History

Accelerating Nios II Networking Applications August 2010 Altera Corporation


	Accelerating Nios II Networking Applications
	Downloading the Ethernet Acceleration Design Example
	The Structure of Networking Applications
	Ethernet System Hierarchy
	Relationships Between Networking System Elements
	Finding the Performance Bottlenecks

	The User Application
	User Application Optimizations
	Software Optimizations
	Hardware Optimizations
	The Sockets API


	Structure of the NicheStack Networking Stack
	General Optimizations
	NicheStack Specific Optimizations
	NicheStack Thread Priorities
	Disabling Nonessential NicheStack Modules
	Using Faster Packet Memory
	Accelerating the Packet Checksum
	Super Loop Mode


	Ethernet Device
	Link Speed
	Network Interface (Altera Triple Speed Ethernet MegaCore Function)
	NicheStack Device Driver Model

	Benchmarking Setup, Results and Analysis
	Overview
	Test Setup
	Test Systems

	Test Methodology
	Ethernet Link Type
	Protocols Tested
	Data Transmission Sizes
	Test Runs

	Nios II System Software Configuration
	NicheStack Networking Stack Configuration
	MicroC/OS-II Configuration
	Benchmark Application
	General Application and System Library Settings

	Workstation System Software

	Nios II Test Hardware and Test Results
	Conclusion
	Appendix
	General Information for TCP/IP Networking
	NicheStack Documentation
	Additional NicheStack Information
	Additional Network Technology Solutions

	Document Revision History




