
101 Innovation Drive
San Jose, CA 95134
www.altera.com

TU-01001-3.0

Tutorial

Using the NicheStack TCP/IP Stack - Nios II Edition

Subscribe

Using the NicheStack TCP/IP Stack - Nios II Edition
Tutorial

http://www.altera.com
https://www.altera.com/servlets/subscriptions/alert?id=TU-01001

Using the NicheStack TCP/IP Stack - Nios II Edition Tutorial June 2011 Altera Corporation

Copyright © 2011 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo, and specific device designations
are trademarks and/or service marks of Altera Corporation in the U.S. and other countries. All other words and logos identified as trademarks and/or service marks
are the property of Altera Corporation or their respective owners. Altera products are protected under numerous U.S. and foreign patents and pending applications,
maskwork rights, and copyrights. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard
warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of
the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to
obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

June 2011 Altera Corporation
Contents
Chapter 1. Using the NicheStack TCP/IP Stack
Introduction . 1–1
Hardware and Software Requirements . 1–2
Tutorial Files . 1–2

Hardware Design Files . 1–2
Software Files . 1–2

Software Development Flow . 1–3
Creating a New Nios II Project . 1–4
Configuring the BSP . 1–7
Examining the Nios II Simple Socket Server Project Files . 1–11
Building and Running the Nios II Simple Socket Server Project . 1–11
Interacting with the Nios II Simple Socket Server . 1–13

Nios II Simple Socket Server Overview . 1–16
Software Naming Conventions . 1–16
Software Architecture . 1–17
MicroC-OS/II Resources . 1–19

Tasks . 1–19
Inter-Task Communication Resources . 1–20

NicheStack TCP/IP Stack Initialization . 1–20
Nios II Simple Socket Server Implementation Details . 1–21

Important NicheStack TCP/IP Stack Concepts . 1–22
Error Handling . 1–22
NicheStack TCP/IP Stack Default Task Creation . 1–22
Creating Tasks that Use the NicheStack TCP/IP Stack Sockets Interface . 1–23
Task Priorities in the Nios II Simple Socket Server Design . 1–25

MicroC/OS-II Internal Tasks . 1–25
NicheStack TCP/IP Stack Internal Tasks . 1–25
Networking Initialization Task . 1–26
User Networking Tasks . 1–26
User Non-Networking Tasks . 1–26
PHY Monitoring Task . 1–26

Task Stack Size . 1–26
Where to Go Next . 1–27

Appendix A. Hardware Setup Details
Introduction . A–1
Network Connection . A–1

Additional Information
Document Revision History . Info–1
How to Contact Altera . Info–1
Typographic Conventions . Info–1
Using the NicheStack TCP/IP Stack - Nios II Edition Tutorial

iv Contents
Using the NicheStack TCP/IP Stack - Nios II Edition Tutorial June 2011 Altera Corporation

June 2011 Altera Corporation
1. Using the NicheStack TCP/IP Stack
This tutorial introduces you to the Nios® II Software Build Tools (SBT) for Eclipse™
using the MicroC/OS-II and NicheStack TCP/IP Stack development flow. It shows
you how to use the Nios II SBT for Eclipse to create a new Nios II project that
configures, builds, and runs a MicroC/OS-II and NicheStack TCP/IP Stack program
on an Altera® development board.

Introduction
This tutorial familiarizes you with the NicheStack TCP/IP Stack – Nios II Edition
(NicheStack TCP/IP Stack) software component. The tutorial covers the following
topics:

■ Configuring and initializing the NicheStack TCP/IP Stack software component

■ Managing a TCP/IP connection with MicroC/OS-II real-time operating system
(RTOS) tasks

■ Using the Nios II SBT for Eclipse to develop programs with the NicheStack
TCP/IP Stack software component

The Nios II SBT for Eclipse offers software designers a rich development platform for
Nios II applications. The Nios II SBT for Eclipse contains the MicroC/OS-II RTOS and
the NicheStack TCP/IP Stack software component, providing designers with the
ability to quickly build networked embedded systems applications for the Nios II
processor. This tutorial provides step-by-step instructions for building a simple
program based on the MicroC/OS-II RTOS and NicheStack TCP/IP Stack networking
stack.

This tutorial describes C software files that demonstrate communication with a telnet
client on a development host PC. The telnet client offers a convenient way of issuing
commands over a TCP/IP socket to the Ethernet-connected NicheStack TCP/IP Stack
running on the Altera development board with a simple TCP/IP socket server
example. The socket server example receives commands sent over a TCP/IP
connection and turns LEDs on and off according to the commands. The example
consists of a socket server task that listens for commands on a TCP/IP port and
dispatches those commands to a set of LED management tasks.

1 The Nios II target system does not implement a full telnet server.

f For more information about MicroC/OS-II for the Nios II processor, refer to the
MicroC/OS-II Real-Time Operating System chapter of the Nios II Software Developer’s
Handbook.

f For more information about NicheStack TCP/IP Stack initialization and configuration
for the Nios II processor, refer to the Ethernet and the NicheStack TCP/IP Stack – Nios II
Edition chapter of the Nios II Software Developer's Handbook.
Using the NicheStack TCP/IP Stack - Nios II Edition Tutorial

http://www.altera.com/literature/hb/nios2/n2sw_nii52008.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52013.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52013.pdf

1–2 Chapter 1: Using the NicheStack TCP/IP Stack
Hardware and Software Requirements
Hardware and Software Requirements
This tutorial requires the following hardware and software:

■ Quartus® II software version 11.0 or later

■ Nios II Embedded Design Suite (EDS) version 11.0 or later

■ One of the following Altera development kit boards:

■ Nios II Embedded Evaluation Kit (NEEK), Cyclone® III Edition

■ Embedded Systems Development Kit (ESDK), Cyclone III Edition

■ Stratix® IV GX FPGA Development Kit

■ Altera® USB-Blaster™ cable

■ RJ-45 connected Ethernet cable on the same network as the PC development host

To complete this tutorial, you must install the Nios II SBT for Eclipse and you must
connect your Altera development board to a host PC on the Ethernet and USB/JTAG
ports. For hardware setup instructions, refer to Appendix A, Hardware Setup Details.

Tutorial Files
The files for this tutorial are available in two .zip files on the Altera website. One file
contains the hardware design example and the other contains the software program
files.

Hardware Design Files
The Nios II Ethernet Standard Design Example page of the Altera website contains
the hardware design files to use with this tutorial. Navigate to the web page and
locate the Nios II Ethernet Standard design example .zip file that corresponds to your
board. Download and unzip the file in a directory of your choosing. The tutorial uses
<tutorial_files> to refer to this directory.

Software Files
The NicheStack tutorial software files .zip file (next to the link to this document on the
Literature: Nios II Processor page of the Altera website) contains the software
program files to use with this tutorial. Download and unzip the file in a directory of
your choosing. The tutorial uses <tutorial_files> to refer to this directory.
Using the NicheStack TCP/IP Stack - Nios II Edition Tutorial June 2011 Altera Corporation

http://www.altera.com/literature/tt/nichestack_tutorial.zip
http://www.altera.com/support/examples/nios2/exm-net-std-de.html
http://www.altera.com/literature/lit-nio2.jsp

Chapter 1: Using the NicheStack TCP/IP Stack 1–3
Software Development Flow
You can locate the following software files in the <tutorial_files>\nichestack_tutorial
directory. These software files constitute the Nios II Simple Socket Server application
for this tutorial:

■ alt_2_wire.c—Contains utilities that provide a low-level interface to the EEPROM
devices.

■ alt_2_wire.h—Defines utilities that provide a low-level interface to the EEPROM
devices.

■ alt_eeprom.c—Contains utilities that read, write, dump, and fill the contents of the
EEPROM devices.

■ alt_eeprom.h—Defines utilities that read, write, dump, and fill the contents of the
EEPROM devices.

■ alt_error_handler.c—Contains three error handlers, one each for the Nios II
Simple Socket Server, NicheStack TCP/IP Stack, and MicroC/OS-II.

■ alt_error_handler.h—Contains definitions and function prototypes for the three
software component-specific error handlers.

■ iniche_init.c—Defines main(), which initializes MicroC/OS-II and NicheStack
TCP/IP Stack, processes the MAC and IP addresses, contains the PHY
management tasks, and defines function prototypes.

■ led.c—Contains the LED management tasks.

■ niosII_simple_socket_server.c—Defines the tasks and functions that use the
NicheStack TCP/IP Stack sockets interface, and creates all the MicroC/OS-II
resources.

■ niosII_simple_socket_server.h—Defines the task prototypes, task priorities, and
other MicroC/OS-II resources used in this tutorial.

■ tse_my_system.c—Defines the global structure of type "alt_tse_system_info",
named "tse_mac_device" which describes the TSE configuration.

Software Development Flow
The process for creating a NicheStack TCP/IP Stack and MicroC-OS/II software
image for the Nios II processor consists of the following general steps:

1. Creating a new Nios II SBT for Eclipse C/C++ application project with the simple
socket server project template

2. Configuring a board support package (BSP) project, including MicroC/OS-II and
the NicheStack TCP/IP Stack software component

3. Building the application project

4. Running and debugging the application project
June 2011 Altera Corporation Using the NicheStack TCP/IP Stack - Nios II Edition Tutorial

1–4 Chapter 1: Using the NicheStack TCP/IP Stack
Software Development Flow
Creating a New Nios II Project
In this section, you create a new Nios II SBT for Eclipse project using a project
template. To do so, follow these steps:

1. Start the Nios II SBT for Eclipse by performing one of the following actions:

■ On Windows, on the Start menu, point to All Programs > Altera > Nios II EDS
<version>, and click Nios II <version> Software Build Tools for Eclipse.

■ On Linux, open a Nios II Command Shell and type eclipse-nios2 r.

2. On the File menu, point to New and click Nios II Application and BSP from
Template. The first page of the Nios II Application and BSP from Template
wizard appears.

3. Under Target hardware information, browse to and open the
<tutorial_files>\niosii_ethernet_standard_<board>\eth_std_main_system.sopcin
fo SOPC Information File (.sopcinfo). The SOPC Information File name box
contains the path to the .sopcinfo and the CPU name box contains the name of one
of the available Nios II processors as defined in SOPC Builder. The hardware
design of the tutorial contains a single processor, so the software automatically
selects the single processor.

4. In the Project name box, type niosII_simple_socket_server_0. The Project
location fills in for you automatically.

5. Verify Use default location is on.
Using the NicheStack TCP/IP Stack - Nios II Edition Tutorial June 2011 Altera Corporation

Chapter 1: Using the NicheStack TCP/IP Stack 1–5
Software Development Flow
6. Under Project template, select Blank Project.

Figure 1–1 shows the state of the Nios II Application and BSP from Template
wizard at this point in the tutorial.

7. Click Next. The second page of the Nios II Application and BSP from Template
wizard appears.

8. Select Select an existing BSP project from your workspace.

9. Click Create. The Nios II Board Support Package dialog box appears.

10. In the BSP name box, type niosII_simple_socket_server_0_bsp.

11. In the Operating system list, select Micrium MicroC/OS-II.

Figure 1–1. Nios II Application and BSP from Template Wizard
June 2011 Altera Corporation Using the NicheStack TCP/IP Stack - Nios II Edition Tutorial

1–6 Chapter 1: Using the NicheStack TCP/IP Stack
Software Development Flow
12. Click Finish. The wizard creates a BSP project and closes the Nios II Board
Support Package dialog box.

13. Click Finish. The wizard creates an application project.

1 If the wizard prompts you to open the Nios II perspective, click Yes. If the
Finish button is grayed out, click Cancel to close the previous GUI. Repeat
Step 2 - 8, select niosII_simple_socket_server_0_bsp, and click Finish.

14. With a file management tool (such as Windows Explorer), drag and drop all the
Nios II Simple Socket Server source files and folders from the
<tutorial_files>\nichestack_tutorial folder to the niosII_simple_socket_server_0
folder in the Nios II SBT for Eclipse Project Explorer view.

15. Select Copy files and folders in the File and Folder Operation dialog box, and
click OK.

Figure 1–2 shows the application and BSP projects in the Project Explorer view at this
point in the tutorial.

Figure 1–2. New Projects in the Nios II Perspective
Using the NicheStack TCP/IP Stack - Nios II Edition Tutorial June 2011 Altera Corporation

Chapter 1: Using the NicheStack TCP/IP Stack 1–7
Software Development Flow
Configuring the BSP
After you create a new BSP, you might want to customize its configuration (for
example, defining stdin, stdout, stderr, and other parameters).

f For more information, refer to the Getting Started with the Graphical User Interface
chapter of the Nios II Software Developer’s Handbook.

For this tutorial, you must configure the MicroC/OS-II RTOS kernel and NicheStack
TCP/IP Stack software components. To do so, follow these steps:

1. In the Project Explorer view, right-click the niosII_simple_socket_server_0_bsp
project, point to Nios II, and click BSP Editor. The Nios II BSP Editor appears.

2. On the Main tab (Settings tab in v9.1 and earlier), expand Settings in the left pane,
and click Common. Verify that the settings for the stdout, stdin, and stderr
parameters are peripheral_subsystem_jtag_uart, as shown in Figure 1–3.

Figure 1–3. BSP Editor Main Tab
June 2011 Altera Corporation Using the NicheStack TCP/IP Stack - Nios II Edition Tutorial

http://www.altera.com/literature/hb/nios2/n2sw_nii52017.pdf

1–8 Chapter 1: Using the NicheStack TCP/IP Stack
Software Development Flow
3. On the Main tab (Settings tab in v9.1 and earlier), expand Advanced in the left
pane, and click ucosii. Settings for the MicroC/OS-II RTOS appear, as shown in
Figure 1–4.

The MicroC/OS-II kernel is highly configurable. The options that you set in this
dialog box determine which MicroC/OS-II options are included in the binary
image. Examine the configurable options by clicking each of the options categories
under ucosii in the left pane. For this tutorial, do not change any of the settings.

1 Although this example software design does not use all the MicroC/OS-II
system calls, the NicheStack TCP/IP Stack internally uses many more
MicroC/OS-II system calls, more than the Nios II Simple Socket Server
application itself uses. Do not disable any system calls unless you need to
be very conservative with your code size requirements. You must reenable
system calls that you try to disable if the link stage of the build fails with
unresolved symbols.

Figure 1–4. MicroC/OS-II RTOS Options
Using the NicheStack TCP/IP Stack - Nios II Edition Tutorial June 2011 Altera Corporation

Chapter 1: Using the NicheStack TCP/IP Stack 1–9
Software Development Flow
f For more information about the various MicroC/OS-II features, refer to the
MicroC/OS-II Real-Time Operating System chapter in the Nios II Software
Developer's Handbook.

4. On the Software Packages tab, turn on Enable for the altera_iniche software
package, as shown in Figure 1–5.

5. If a DHCP server is available on your network, turn on enable_dhcp_client. If no
DHCP server is available, turn off enable_dhcp_client and specify your IP
addresses, gateway, and network mask in
<tutorial_files>\nichestack_tutorial\niosII_simple_socket_server.h.

1 Take care when choosing your default IP and gateway addresses. Some
secure router configurations block DHCP request packets on local
subnetworks such as the 192.168.X.X subnetwork. If you do encounter
problems, try using 0.0.0.0 as your default IP and gateway addresses.

Figure 1–5. NicheStack TCP/IP Stack Options
June 2011 Altera Corporation Using the NicheStack TCP/IP Stack - Nios II Edition Tutorial

http://www.altera.com/literature/hb/nios2/n2sw_nii52008.pdf

1–10 Chapter 1: Using the NicheStack TCP/IP Stack
Software Development Flow
6. On the Linker Script tab, verify that the Linker Region Name is sdram for all
enabled Linker Section Names in the table under Linker Section Mappings, as
shown in Figure 1–6. If not, click each current Linker Region Name and select
sdram from the list that appears.

7. Click Generate. When prompted to save your changes, click Yes, Save.

8. Click Exit on the File menu to close the BSP Editor and return to the Nios II SBT for
Eclipse.

9. In BSP project, you must add -DTSE_MY_SYSTEM to your defined symbols.
Right-click the niosII_simple_socket_server_0_bsp project and click Properties.
The Nios II BSP Properties page appears. On the left pane, click Nios II BSP
Properties. In the Defined symbols box, type -DTSE_MY_SYSTEM. Click Apply and
OK.

Figure 1–6. BSP Editor Linker Script Tab
Using the NicheStack TCP/IP Stack - Nios II Edition Tutorial June 2011 Altera Corporation

Chapter 1: Using the NicheStack TCP/IP Stack 1–11
Software Development Flow
Examining the Nios II Simple Socket Server Project Files
You have finished creating and configuring the niosII_simple_socket_server_0
application and the associated BSP projects. Use the Project Explorer view, as shown
in Figure 1–2, to examine the project files in the niosII_simple_socket_server_0 and
niosII_simple_socket_server_0_bsp folders to understand more about the projects.

Building and Running the Nios II Simple Socket Server Project
This section guides you to run the design example on an Altera development board.
This section also guides you to build the application, configure the development
board with a hardware design, and download the executable software file to the
FPGA on the board.

f For more information about building and running programs with the Nios II SBT for
Eclipse, refer to the Getting Started with the Graphical User Interface chapter of the Nios II
Software Developer’s Handbook.

To build and run the application, follow these steps:
June 2011 Altera Corporation Using the NicheStack TCP/IP Stack - Nios II Edition Tutorial

http://www.altera.com/literature/hb/nios2/n2sw_nii52017.pdf

1–12 Chapter 1: Using the NicheStack TCP/IP Stack
Software Development Flow
1. Configure the FPGA on the development board by performing the following steps:

a. On the Nios II menu, click Quartus II Programmer.

b. In the Quartus II Programmer dialog box, on the File menu, click Open.

c. Browse to and open the <tutorial_files>\niosii_ethernet_standard_<board>\
niosii_ethernet_standard_<board>.sof SRAM Object File (.sof). Information
for the file appears in the Quartus II Programmer dialog box.

d. Verify Program/Configure is on, as shown in Figure 1–7.

e. Click Start to configure the FPGA on the development board.

1 If Start is disabled or if the USB-Blaster cable is not listed in the Hardware
Setup field, refer to the Introduction to the Quartus II Software manual for
more information about the Quartus II Programmer.

f. On the File menu, click Exit to close the Quartus II Programmer and return to
the Nios II SBT for Eclipse. If you receive a message that asks if you want to
save the changes to the chain1.cdf file, click No.

2. In the Nios II SBT for Eclipse, select the niosII_simple_socket_server_0 project in
the Project Explorer view.

3. On the Run menu, point to Run As and click Nios II Hardware to build the
program, download it to the board, and run it.

Figure 1–7. Quartus II Programmer Dialog Box
Using the NicheStack TCP/IP Stack - Nios II Edition Tutorial June 2011 Altera Corporation

http://www.altera.com/literature/manual/intro_to_quartus2.pdf

Chapter 1: Using the NicheStack TCP/IP Stack 1–13
Software Development Flow
1 If the Run Configurations dialog box appears, click the Target Connection
tab. Then click Refresh Connections and Apply until a board connection
establishes. After the board connection is established, click Run.

The build process takes several minutes. After the build process completes, the Nios II
SBT for Eclipse downloads the executable program to your development board.

f For additional information about using the Nios II SBT for Eclipse to build projects,
set up run configurations, and download programs to the board, refer to the Getting
Started with the Graphical User Interface chapter of the Nios II Software Developer’s
Handbook.

Interacting with the Nios II Simple Socket Server
After the program downloads to your development board, an LED starts blinking on
your board. Table 1–1 identifies the LED that blinks on each development kit board.

The Nios II Console view displays a message with the default IP address as
configured in niosII_simple_socket_server.h. If DHCP is enabled, the DHCP
server-supplied IP address displays a message that indicates the DHCP client for the
Ethernet interface acquires a DHCP IP address.

The message “Nios II Simple Socket Server starting up” displays when the
NicheStack TCP/IP Stack is ready to accept commands.

After the NicheStack TCP/IP Stack is ready, you can start a telnet session to interact
with the stack. To start a telnet session, follow these steps:

1. From your operating system, open a command shell.

1 On Windows, you can also use Run on the Start menu.

2. Type the following command, specifying either the static IP address or the DHCP
server-provided IP address:

telnet <IP address> 30 r

Table 1–1. Blinking LED Identification

Kit LED

ESDK, Cyclone III Edition LED0

NEEK, Cyclone III Edition LED1 (on back)

Stratix IV GX FPGA Development Kit D23
June 2011 Altera Corporation Using the NicheStack TCP/IP Stack - Nios II Edition Tutorial

http://www.altera.com/literature/hb/nios2/n2sw_nii52017.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52017.pdf

1–14 Chapter 1: Using the NicheStack TCP/IP Stack
Software Development Flow
If the connection to port 30 on the development board is successful, the menu of
available commands displays in a command window. When you enter commands at
the command prompt, Ethernet sends the commands over the telnet connection to a
task waiting on a socket for commands. The task responds to those commands by
sending instructions to another task that manipulates the LED. Figure 1–8 shows the
Nios II Simple Socket Server menu, along with entered commands 1, 2, 3, and Q.

Figure 1–8. Interacting with the Nios II Simple Socket Server Via Telnet
Using the NicheStack TCP/IP Stack - Nios II Edition Tutorial June 2011 Altera Corporation

Chapter 1: Using the NicheStack TCP/IP Stack 1–15
Software Development Flow
Figure 1–9 shows the corresponding output that appears in the Nios II Console view.

To test the functionality of the Nios II Simple Socket Server, enter the following
commands in the telnet session:

1. Type <n> r, where <n> is a number from one through nine, to change the blink rate
of the LED on your board.

2. Repeat step 1 several times, varying the number, to see the pulse rate change.

3. Type Q r to terminate the test. The socket connection on the development board
terminates and the telnet command exits.

Figure 1–9. Nios II Console Output During Telnet Session
June 2011 Altera Corporation Using the NicheStack TCP/IP Stack - Nios II Edition Tutorial

1–16 Chapter 1: Using the NicheStack TCP/IP Stack
Nios II Simple Socket Server Overview
Nios II Simple Socket Server Overview
The following sections describe the Nios II Simple Socket Server:

■ “Software Naming Conventions” on page 1–16—Identifies the naming convention
used in the tutorial files.

■ “Software Architecture” on page 1–17—Describes the architectural model of a
Nios II software application and how it fits with the rest of the Nios II system
software components.

■ “MicroC-OS/II Resources” on page 1–19—Describes the tasks, queue, event flag,
and semaphores that implement the Nios II Simple Socket Server software
application.

■ “NicheStack TCP/IP Stack Initialization” on page 1–20—Describes the required
tasks and functions of the tutorial to establish and maintain the Ethernet TCP/IP
socket connection.

■ “Nios II Simple Socket Server Implementation Details” on page 1–21—Describes
the structure that maintains the socket connection and the functions for each
software component, including main(), MicroC/OS-II initialization, and the
details of the SSS and LED software modules.

Software Naming Conventions
The Nios II Simple Socket Server uses capitalized acronym prefixes to identify public
resources for each software module, and lowercase letters with underscores to
indicate a private resource or function used internally to a software module. Table 1–2
shows the software module acronym identifiers.

Table 1–2. Software Module Acronyms and Names

Acronym Name

SSS Nios II Simple Socket Server software module

LED LED management software module

OS MicroC/OS-II RTOS software component
Using the NicheStack TCP/IP Stack - Nios II Edition Tutorial June 2011 Altera Corporation

Chapter 1: Using the NicheStack TCP/IP Stack 1–17
Nios II Simple Socket Server Overview
Software Architecture
The onion diagram in Figure 1–10 shows the architectural layers of a Nios II
MicroC/OS-II software application.

Each layer encapsulates the specific implementation details of that layer, abstracting
the data for the next outer layer. The following list describes each layer:

■ Nios II processor system hardware—The core of the onion diagram represents the
Nios II softcore processor and hardware peripherals implemented in the FPGA.

■ Software device drivers—The software device drivers layer contains the software
functions that manipulate the Ethernet and hardware peripherals. These drivers
know the physical details of the peripheral devices, abstracting those details from
the outer layers.

■ HAL API—The Altera Hardware Abstraction Layer (HAL) application
programming interface (API) provides a standardized interface to the software
device drivers, presenting a POSIX-like API to the outer layers.

■ MicroC/OS-II—The MicroC/OS-II RTOS layer provides multitasking and inter-
task communication services to the NicheStack TCP/IP Networking Stack and the
Nios II Simple Socket Server.

■ NicheStack TCP/IP Stack software component—The NicheStack TCP/IP Stack
software component layer provides networking services to the application layer
and application-specific system initialization layer via the sockets API.

■ Application-specific system initialization—The application-specific system
initialization layer includes the MicroC/OS-II and NicheStack TCP/IP Stack
software component initialization functions invoked from main(), as well as
creates all application tasks, and all the semaphores, queue, and event flag RTOS
inter-task communication resources.

■ Application—The outermost application layer contains the Nios II Simple Socket
Server task and LED management tasks.

Figure 1–10. Layered Software Model

Application

Application-specific system initialization

Nich
eStack TCP/IP Stack software component

MicroC/OS-II

HAL API

Software device drivers
Nios II processor
system hardware

Hardware

Software
June 2011 Altera Corporation Using the NicheStack TCP/IP Stack - Nios II Edition Tutorial

1–18 Chapter 1: Using the NicheStack TCP/IP Stack
Nios II Simple Socket Server Overview
Figure 1–11 shows the structure of the design example described in “Introduction” on
page 1–1. The sections following the figure describe the tasks in the figure.

The figure shows the state of the system after initialization. When the NicheStack
TCP/IP Stack software component receives an Ethernet packet that contains an LED
command sent from a telnet client program, the NicheStack TCP/IP Stack processes
the incoming Ethernet packet with the TCP/IP protocol and presents the data packet
to the socket server task using the sockets API. The LED management tasks then
extract and post the LED command contained in the data packet to the LED command
queue for processing.

Figure 1–11. Nios II Simple Socket Server Data Flow Diagram

LED
Management

Task

LED Blink
Task

NicheStack
TCP/IP
Task

SSS LED Frequency Mailbox

TCP/IP Ethernet packet exchange with telnet
client on host PC using NicheStack sockets APINicheStack

Timer
Task

A single MicroC/OS-II software component function call

NicheStack Software Component Interface consisting of socket function calls

SSS LED Command Q

3 2 1Q

NicheStack Software Component

LED write

Nios II
Simple Socket
Server Task

OSMboxAcceptOSQPendOSQPost OSMboxPost
LED

Ethernet packet

Monitor
PHY
Task

PHY driver level interface
Using the NicheStack TCP/IP Stack - Nios II Edition Tutorial June 2011 Altera Corporation

Chapter 1: Using the NicheStack TCP/IP Stack 1–19
Nios II Simple Socket Server Overview
MicroC-OS/II Resources
This section describes the tasks, queue, event flag, and semaphores that implement
the Nios II Simple Socket Server application.

Tasks
Table 1–3 lists the MicroC/OS-II tasks that implement the Nios II Simple Socket
Server application.

The application creates the tasks listed in Table 1–3. The NicheStack TCP/IP
Networking Stack creates two additional software component layer tasks: a main task
that operates the networking stack, and a time-keeping task that the main task uses.
The application creates the NicheStack TCP/IP Stack main task (tk_netmain) in the
netmain() function with a priority of TK_NETMAIN_TPRIO. The application creates the
time-keeping task (tk_nettick) in the netmain() call with a priority level of
TK_NETTICK_TPRIO. For more information about these tasks, and how to set their
priorities and stack sizes, refer to “Important NicheStack TCP/IP Stack Concepts” on
page 1–22.

Table 1–3. MicroC/OS-II Tasks for the Nios II Simple Socket Server

Task Description

SSSInitialTask()
Instantiates all the MicroC/OS-II resources. Initializes the NicheStack TCP/IP
Stack and the Nios II Simple Socket Server example RTOS structures and
tasks.

SSSNiosIISimpleSocketServerTask()
Manages the socket server connection, and calls relevant subroutines to
manage the socket connection.

LEDManagementTask()
Manages LEDBlinkTask, driven by commands received via a MicroC/OS-II
queue, named SSSLEDCommandQ. The MicroC/OS-II mailbox, named
SSSLEDFreqMailbox, passes blink rate values to the LED blink task.

LEDBlinkTask()
Blinks an LED on the development board, based on frequencies received via
MicroC/OS-II mailbox.

SSSMonitorPhyTask()
Monitors the status of a single network PHY and maintains the network
connection.
June 2011 Altera Corporation Using the NicheStack TCP/IP Stack - Nios II Edition Tutorial

1–20 Chapter 1: Using the NicheStack TCP/IP Stack
Nios II Simple Socket Server Overview
Inter-Task Communication Resources
The following global handles (or pointers) create and manipulate your MicroC/OS-II
inter-task communication resources. All the resources begin with SSS, indicating a
public resource provided by the Nios II Simple Socket Server that is shared between
software modules. The SSSCreateOSDataStructs function, invoked from
SSSInitialTask() declares and creates these resources in
niosII_simple_socket_server.c.

■ SSSLEDCommandQ

SSSLEDCommandQ is a MicroC/OS-II message queue that sends commands from the
simple socket server task to the Altera development board LED control task,
LEDManagementTask().

■ SSSLEDFreqMailbox

SSSLEDFreqMailbox is the handle to the MicroC/OS-II LED pulse rate mailbox.
The mailbox passes an LED blink rate between the LED control task, named
LEDManagementTask(), and the LED task responsible for blinking the development
board LED, named LEDBlinkTask(). The LEDManagementTask() passes the pulse
rate in response to a command sent from SSSNiosIISimpleSocketServerTask()
when the “blink the LED” command comes over the TCP/IP socket.

NicheStack TCP/IP Stack Initialization
As described in the “NicheStack TCP/IP Stack Tasks” and “Initializing the Stack”
sections of the Ethernet and the NicheStack TCP/IP Stack – Nios II Edition chapter of the
Nios II Software Developer's Handbook, the NicheStack TCP/IP Stack must be initialized
from the Nios II Simple Socket Server application code by calling the following
NicheStack functions:

■ alt_iniche_init(), called from SSSInitialTask() in iniche_init.c

■ netmain(), called from SSSInitialTask() in iniche_init.c

You must provide three NicheStack functions , get_mac_addr(),
get_board_mac_addr() and get_ip_addr(). For this tutorial, these functions are
available in iniche_init.c.

1 If get_board_mac_addr() is unable to find valid MAC address, refer to your board's
user guide for instructions on restoring the MAC address, or hard code the MAC
address in the get_mac_addr() function.

An initialization task named SSSInitialTask() calls the alt_iniche_init() and
netmain() initialization functions in the proper sequence, and then waits until the
NicheStack TCP/IP Stack becomes fully operational (by waiting for the global
variable iniche_net_ready to be set to TRUE) before creating the application level
task SSSNiosIISimpleSocketServerTask().

SSSNiosIISimpleSocketServerTask() is defined in niosII_simple_socket_server.c
and created with priority SSS_NIOS_II_SIMPLE_SOCKET_SERVER_TASK_PRIORITY.

1 You can use the task SSSInitialTask() in your own MicroC/OS-II and NicheStack
TCP/IP Stack networking application.
Using the NicheStack TCP/IP Stack - Nios II Edition Tutorial June 2011 Altera Corporation

http://www.altera.com/literature/hb/nios2/n2sw_nii52013.pdf

Chapter 1: Using the NicheStack TCP/IP Stack 1–21
Nios II Simple Socket Server Overview
Nios II Simple Socket Server Implementation Details
This section provides details about the simple socket server structures, tasks, and
functions.

The Nios II Simple Socket Server application uses following structure to manage each
single socket connection:

typedef struct SSS_SOCKET {
enum { READY, COMPLETE, CLOSE } state;
int fd;
int close;
INT8U rx_buffer[SSS_RX_BUF_SIZE]; /* circular buffer */
INT8U *rx_rd_pos; /* position we've read up to */
INT8U *rx_wr_pos; /* position we've written up to */
} SSSConn;

The application’s main() function (located in iniche_init.c) performs the following
actions:

■ Calls OSTimeSet()

■ Calls OSTaskCreateExt which in turn calls SSSInitialTask()

■ Calls alt_uCOSIIErrorHandler()

■ Calls OSStart() to begin multithreading

The Micrium’s MicroC/OS-II examples suggest using a single task to initialize the rest
of the application. This technique ensures that stack checking initializes enabled
features correctly. In this tutorial, the SSSInitialTask() task (located in iniche_init.c)
initializes the NicheStack TCP/IP Stack software, initializes the operating system data
structures, and starts any user-defined networking tasks and regular tasks. The
SSSInitialTask()task performs the following specific actions:

■ Calls alt_iniche_init() to perform pre-initialization of the NicheStack
Networking Stack

■ Calls netmain() to initialize and start the NicheStack Networking Stack

■ Instantiates ssstask() and sssphytask() (via TK_NEWTASK) to start the Nios II
Simple Socket Server networking task

■ Calls SSSCreateOSDataStructs() to create data structures (SSSLEDCommandQ and
SSSLEDFreqMailbox RTOS resources) for the Nios II Simple Socket Server
application

■ Calls SSSCreateTasks() to create non-NicheStack TCP/IP Stack dependent tasks,
including the LED tasks

■ Calls OSTaskDel() to delete itself as a task

The SSSNiosIISimpleSocketServerTask() task (located in
niosII_simple_socket_server.c) performs the following actions:

■ Creates a socket to serve a TCP/IP connection, binds to the socket, and listens for
TCP/IP connection requests from a client.

■ Calls SSS_handle_accept() for an incoming TCP/IP connection.
June 2011 Altera Corporation Using the NicheStack TCP/IP Stack - Nios II Edition Tutorial

1–22 Chapter 1: Using the NicheStack TCP/IP Stack
Important NicheStack TCP/IP Stack Concepts
■ Calls SSS_handle_receive() to serve the TCP/IP connection. If you require
multiple TCP/IP connections, you can modify this task to create other tasks that
handle each individual TCP/IP connection.

■ Calls SSS_reset_connection(), SSS_send_menu(), and SSS_exec_command().

■ When the SSSNiosIISimpleSocketServerTask() task receives data packets, the
task extracts, and passes the LED commands to LEDManagementTask() via the
SSSLEDCommandQ.

The following list describes the LED tasks (located in leds.c):

■ The LEDManagementTask() task consumes and processes LED commands received
on the SSSLEDCommandQ. The task reads the SSSLEDCommandQ for an incoming
message command from SSSNiosIISimpleSocketServerTask(), converts the
command to an LED pulse rate, and posts the pulse rate to the SSSLEDFreqMailbox
mailbox for the LEDBlinkTask() task.

■ LEDBlinkTask() blinks the LED based on the pulse rate the LEDManagementTask()
task sets in the MicroC/OS-II SSSLEDFreqMailbox mailbox.

Important NicheStack TCP/IP Stack Concepts
The following topics could have a significant impact on your design.

Error Handling
A suite of error-handling functions defined in alt_error_handler() check error
handling of the Nios II Simple Socket Server application, NicheStack TCP/IP Stack,
and MicroC-OS/II system call error-codes. All system, socket, and application calls
check for error conditions whenever an error could exist.

NicheStack TCP/IP Stack Default Task Creation
The NicheStack TCP/IP Stack creates one or more system level tasks during system
initialization, when you call the netmain() function. Users have complete control over
these system level tasks through a global configuration file named ipport.h, located in
the directory structure for the BSP project, in the iniche/src/h/nios2 folder.

You can edit the #define statements in ipport.h to configure the following options for
the NicheStack TCP/IP Stack:

■ Module Inclusion—Identifies which built-in NicheStack modules should be
started

■ Module Priority—Identifies what MicroC/OS-II priority the module task should
use

■ Module Stack Size—Identifies what MicroC/OS-II stack size the module should
use

f For more information about other NicheStack TCP/IP Stack options that can be
enabled at run-time, refer to the NicheStack TCP/IP Stack documentation in
NicheStackRef.zip located in the <Nios II EDS install
path>/components/altera_iniche/UCOSII/31src directory.
Using the NicheStack TCP/IP Stack - Nios II Edition Tutorial June 2011 Altera Corporation

Chapter 1: Using the NicheStack TCP/IP Stack 1–23
Important NicheStack TCP/IP Stack Concepts
In the Nios II Simple Socket Server design example, only the minimum required
NicheStack TCP/IP Stack tasks have been configured to run. These tasks are as
follows:

■ tk_netmain—Initializes the stack, including networking interfaces

■ tk_nettick—A time management task that the networking stack uses

For more information about these NicheStack TCP/IP Stack tasks, refer to “Task
Priorities in the Nios II Simple Socket Server Design” on page 1–25.

Creating Tasks that Use the NicheStack TCP/IP Stack Sockets Interface
You must use the function call TK_NEWTASK to create any tasks that use the NicheStack
networking services. You must create tasks that do not use networking services with
the MicroC/OS-II function OSTaskCreate().

The NicheStack Networking Stack uses the TK_NEWTASK (defined in osportco.c)
function to launch MicroC/OS-II tasks that use the networking services. TK_NEWTASK
accepts a single argument, struct inet_taskinfo * nettask (defined in osport.h),
which specifies the task name, the MicroC/OS-II thread priority, and the stack size.
You can locate these files in the <Nios II EDS install path>/components/
altera_iniche/UCOSII/src/nios2 directory. The struct inet_taskinfo structure is
defined as follows:

struct inet_taskinfo {
TK_OBJECT_PTR(tk_ptr);/* pointer to static task object */
char * name;/* name of task */
TK_ENTRY_PTR(entry); /* pointer to code that starts task*/
int priority; /* MicroC/OS-II priority of the task */
int stacksize;/* size (bytes) of task’s stack */
char* stackbase; /* base of task’s stack */
};

For every networking task you create in your application, you must declare a local
struct inet_taskinfo structure with the elements defined. These elements are listed
in the following bullets, along with a brief explanation of their function:

■ TK_OBJECT_PTR(tk_ptr)—A pointer to a static task object, defined for a given task
via the TK_OBJECT macro. The NicheStack Networking Stack makes use of the
tk_ptr element during the operation. After declaring the variable name via the
TK_OBJECT and populating the TK_OBJECT_PTR(tk_ptr), you do not need to do
anything more.

■ char * name—This element contains a character string that corresponds to the
name of the task. You can set it with any character string you choose.

■ TK_ENTRY_PTR(entry)—This element corresponds to the entry point or defined
function name of the task that you want to run.

■ int priority—The MicroC/OS-II priority level for the task.

■ int stacksize—The MicroC/OS-II stack size for the task.

■ char* stackbase—This element in the structure is used by the NicheStack
software. You must not change the element in the structure.
June 2011 Altera Corporation Using the NicheStack TCP/IP Stack - Nios II Edition Tutorial

1–24 Chapter 1: Using the NicheStack TCP/IP Stack
Important NicheStack TCP/IP Stack Concepts
In addition to declaring the struct inet_taskinfo structure, you must invoke two
macro definitions: TK_OBJECT and TK_ENTRY. These macros have the following uses:

■ TK_OBJECT(name)—Creates the static task object named name, which is used by
NicheStack during operation. The static task object is also set in
TK_OBJECT_PTR(tk_ptr). A NicheStack naming convention for the name parameter
is to set it to the string “to_”, followed by the declared name of the struct
inet_taskinfo instance.

■ TK_ENTRY(name)—Used to create a declaration of the task’s entry point, or function
name. The name parameter is identical to the function name you specified for the
task that you want to create, which must have the form void name (void). The
name parameter sets the TK_ENTRY_PTR(entry) macro.

To create your own application tasks that use the services offered by the NicheStack
TCP/IP Stack, follow these steps:

1. Invoke Task Macros—Include the TK_OBJECT and TK_ENTRY macros, with
information about your task.

2. Define Task Parameters—Define your task application by filling in a local
inet_taskinfo structure in your code.

3. Wait for Stack Initialization—Before launching your task, wait until the external
variable iniche_net_ready is set to TRUE. This variable sets to FALSE at run time
and changes to TRUE when the NicheStack TCP/IP Networking Stack is
operational.

4. Launch Task—Call TK_NEWTASK while passing in a pointer to the inet_taskinfo
structure for your task.

Following is a code sample for creating your own application task:

// Declaration of SSSNiosIISimpleSocketServerTask
void SSSNiosIISimpleSocketServerTask(void){
 // task specific code
}

// Creation of NicheStack networking task
TK_OBJECT(to_ssstask);
TK_ENTRY(SSSNiosIISimpleSocketServerTask);

struct inet_taskinfo ssstask = {
&to_ssstask,
"simple socket server",
SSSNiosIISimpleSocketServerTask,
TASK_PRIORITY,
APP_STACK_SIZE,

};

while (!iniche_net_ready)
 TK_SLEEP(1);

/* Create the main simple socket server task. */
TK_NEWTASK(&ssstask);

Networking tasks can hand off large processing jobs that are independent of
networking to other tasks. This task load segmentation has the advantage of
increasing control over memory usage for task stacks, as well as greater control over
prioritization of jobs.
Using the NicheStack TCP/IP Stack - Nios II Edition Tutorial June 2011 Altera Corporation

Chapter 1: Using the NicheStack TCP/IP Stack 1–25
Important NicheStack TCP/IP Stack Concepts
Be careful not to overutilize job distribution among several tasks at the same time, for
the following reasons:

■ Additional tasks require additional CPU execution time to do task
context-switching.

■ Limited number of priorities. Each task must have its own unique priority in
MicroC/OS-II, and you do not want to run out of task priorities.

Task Priorities in the Nios II Simple Socket Server Design
Task priorities in the application directly affect how the application runs, or if the task
functions correctly at all. The MicroC/OS-II operating system uses a unique priority
number scheme for running its tasks, in which tasks assigned a lower priority number
are treated as higher priority tasks. Because the Altera version of the NicheStack
TCP/IP Stack requires the use of the MicroC/OS-II RTOS for operation, all tasks run
on the system must be assigned a unique priority number. For the Nios II Simple
Socket Server demo application, all tasks have been assigned non-conflicting
priorities. For your own application, however, you should verify that all tasks in your
system are assigned unique priority numbers at run-time.

Table 1–4 lists the tasks that might be running in your system, and the mechanism for
configuring the priority of these tasks.

The following sections discuss the priorities of the tasks in the Nios II Simple Socket
Server design:

MicroC/OS-II Internal Tasks
The Nios II Simple Socket Server application has been configured to not use any
MicroC/OS-II internal tasks.

NicheStack TCP/IP Stack Internal Tasks
TK_NETMAIN_TPRIO, defined in ipport.h, sets the priority to a value of 2 for the main
NicheStack TCP/IP Stack task, launched by netmain(). This task implements the core
functionality of the NicheStack TCP/IP Stack. To maximize the TCP/IP packet-
throughput rate, the priority of this task should be higher than application tasks that
use the NicheStack TCP/IP Networking Stack.

Table 1–4. Simple Socket Server Tasks and Configuration Mechanisms

Task Type Configuration Mechanism

MicroC/OS-II internal tasks ucosii settings, located on the Main tab of the Nios II BSP Editor

NicheStack TCP/IP Stack internal tasks ipport.h, located in the iniche/src/h/nios2 directory of your BSP project

Networking initialization task iniche_init.c, located in the <tutorial_files>\nichestack_tutorial directory

User networking tasks (calls to
TK_NEWTASK) Created in the user application code

User non-networking tasks (calls to
OSTaskCreate) Created in the user application code

PHY monitoring task Created in the user application code
June 2011 Altera Corporation Using the NicheStack TCP/IP Stack - Nios II Edition Tutorial

1–26 Chapter 1: Using the NicheStack TCP/IP Stack
Important NicheStack TCP/IP Stack Concepts
TK_NETTICK_TPRIO, defined in ipport.h, sets the priority to a value of 3 for the
NicheStack TCP/IP Stack time-keeping task, launched by netmain(). The NicheStack
TCP/IP Stack uses this task to keep track of time-based events in the networking
stack. Altera recommends that you set the priority of this task to one priority level
lower than TK_NETMAIN_TPRIO.

Networking Initialization Task
SSS_INITIAL_TASK_PRIORITY is set to a value of 5 for the first task that MicroC/OS-II
runs. This task creates the resources and all the other tasks before deleting itself. This
task is given a high priority, not due to its high time-period rate or low latency
requirement, but to create all the real-time operating system resources and tasks
before the other tasks start using the resources.

User Networking Tasks
SSS_NIOS_II_SIMPLE_SOCKET_SERVER_TASK_PRIORITY is set to a value of 10, a priority
that is lower than the consumer task LEDManagementTask(). The priority of this
application task is set lower than all of the software components’ system service tasks.
This practice allows for the best overall scheduling latency, because the software
component tasks are designed to operate for as short a period of time as possible.

User Non-Networking Tasks
LED_MANAGEMENT_TASK_PRIORITY is set to a value of 7. This task’s function is to receive
LED command messages from the SSSNiosIISimpleSocketServerTask.

LED_BLINK_TASK_PRIORITY is set to a value of 11. The priority of this application task is
set lower than the rest of the tasks in the system because it requires very little of the
Nios II processor’s cycles to operate.

PHY Monitoring Task
SSS_MONITOR_PHY_TASK_PRIORITY is set to value 9. This task monitors the status of a
single network PHY and acts to maintain the network connection.

Task Stack Size
Task stack space requirements depend on how the Nios II processor, HAL, RTOS, and
individual software components are configured. A quick empirical check of the Stk[]
array values at runtime, via the Nios II SBT for Eclipse memory window, is an easy
way to examine the top of a task stack. Examination of a task’s Stk[] array reveals
differing values representing the used portion of the stack followed by multiple zeros
where the stack has not yet reached. The number of zeros until the beginning of the
next adjacent task stack shows how deep the stack has grown since the last system
reset.

All tasks that make run-time library calls have space allocated from the top of the
stack for the approximately 900-byte _reent structure. Each task has its own copy of
the structure positioned on the task’s stack. The size of this structure alone reduces the
amount of available stack space.
Using the NicheStack TCP/IP Stack - Nios II Edition Tutorial June 2011 Altera Corporation

Chapter 1: Using the NicheStack TCP/IP Stack 1–27
Where to Go Next
f For more information about the _reent structure, refer to the “The Newlib ANSI C
Standard Library” and the “Implementing MicroC/OS-II Projects for the Nios II
Processor” sections of the MicroC/OS-II Real-Time Operating System chapter of the
Nios II Software Developer’s Handbook.

Where to Go Next
This example is easily expandable to handle multiple TCP connections on a single
port. The SSSNiosIISimpleSocketServerTask() task could be modified to create
separate socket connection instance tasks to handle multiple telnet connections.

There are many uses for an Ethernet connection in an embedded system. A
connection to the Internet can allow the addition of many powerful features for any
embedded product, such as remote configurability using a web browser, or remote
software upgrade for corrections or feature enhancements to a product already in the
field.
June 2011 Altera Corporation Using the NicheStack TCP/IP Stack - Nios II Edition Tutorial

http://www.altera.com/literature/hb/nios2/n2sw_nii52008.pdf

1–28 Chapter 1: Using the NicheStack TCP/IP Stack
Where to Go Next
Using the NicheStack TCP/IP Stack - Nios II Edition Tutorial June 2011 Altera Corporation

June 2011 Altera Corporation
A. Hardware Setup Details
Introduction
To complete this tutorial, you must have the Nios II SBT for Eclipse installed, and
your Altera development board must be connected to a host PC on both the Ethernet
and USB/JTAG ports.

f For information about download cables and drivers, refer to the Download Cables
page of the Altera website.

The Nios II Ethernet Standard hardware design examples for Altera development
boards include the Ethernet device required by this NicheStack tutorial. The Ethernet
device included in these design examples, along with the physical MAC/PHY on
your Altera development boards, is the Altera Triple Speed Ethernet MAC peripheral.
The Ethernet peripheral base address settings for the design examples are defined in
system.h.

Network Connection
If you are using a DHCP server to assign IP addresses, connect your Altera
development board to your Ethernet network.

If the Altera development board is connected directly to your PC with a crossover
Ethernet cable, or a DHCP server is not available, specify the IP addresses manually in
niosII_simple_socket_server.h.

The default IP addresses in niosII_simple_socket_server.h are set to all zeros so the
DHCP server packets can pass through secure routers. If you are not using a DHCP
server, specify valid static addresses, such as an IP address of 192.168.1.234, with a
gateway of 192.168.1.1 and a subnet mask of 255.255.255.0.

1 Be sure to turn the enable_dhcp_client setting on or off accordingly on the Software
Packages tab of the BSP Editor. For details, refer to “Configuring the BSP” on
page 1–7.
Using the NicheStack TCP/IP Stack - Nios II Edition Tutorial

http://www.altera.com/support/devices/tools/altera/cables/tls-altera-cables.html

A–2 Appendix A: Hardware Setup Details
Network Connection
Using the NicheStack TCP/IP Stack - Nios II Edition Tutorial June 2011 Altera Corporation

June 2011 Altera Corporation
Additional Information
This chapter provides additional information about the document and Altera.

Document Revision History
The following table shows the revision history for this document.

How to Contact Altera
For the most up-to-date information about Altera products, refer to the following
table.

Typographic Conventions
The following table shows the typographic conventions this document uses.

Date Version Changes

June 2011 3.0 Revised for Quartus II Software 11.0 release.

May 2010 2.0 Revised for Nios II Software Build Tools for Eclipse.

January 2007 1.0 Initial release.

Contact (1) Contact Method Address

Technical support Website www.altera.com/support

Technical training
Website www.altera.com/training

Email custrain@altera.com

Product literature Website www.altera.com/literature

Non-technical support (General) Email nacomp@altera.com

(Software Licensing) Email authorization@altera.com

Note to Table:

(1) You can also contact your local Altera sales office or sales representative.

Visual Cue Meaning

Bold Type with Initial Capital
Letters

Indicate command names, dialog box titles, dialog box options, and other GUI
labels. For example, Save As dialog box. For GUI elements, capitalization matches
the GUI.

bold type
Indicates directory names, project names, disk drive names, file names, file name
extensions, software utility names, and GUI labels. For example, \qdesigns
directory, d: drive, and chiptrip.gdf file.

Italic Type with Initial Capital Letters Indicate document titles. For example, AN 519: Stratix® IV Design Guidelines.

italic type
Indicates variables. For example, n + 1.

Variable names are enclosed in angle brackets (< >). For example, <file name> and
<project name>.pof file.
Using the NicheStack TCP/IP Stack - Nios II Edition Tutorial

http://www.altera.com/support
http://www.altera.com/training
mailto:custrain@altera.com
http://www.altera.com/literature/
mailto:nacomp@altera.com
mailto:authorization@altera.com

Info–2 Additional Information
Typographic Conventions
Initial Capital Letters Indicate keyboard keys and menu names. For example, the Delete key and the
Options menu.

“Subheading Title” Quotation marks indicate references to sections within a document and titles of
Quartus II Help topics. For example, “Typographic Conventions.”

Courier type

Indicates signal, port, register, bit, block, and primitive names. For example, data1,
tdi, and input. The suffix n denotes an active-low signal. For example, resetn.

Indicates command line commands and anything that must be typed exactly as it
appears. For example, c:\qdesigns\tutorial\chiptrip.gdf.

Also indicates sections of an actual file, such as a Report File, references to parts of
files (for example, the AHDL keyword SUBDESIGN), and logic function names (for
example, TRI).

r An angled arrow instructs you to press the Enter key.

1., 2., 3., and
a., b., c., and so on

Numbered steps indicate a list of items when the sequence of the items is important,
such as the steps listed in a procedure.

■ ■ ■ Bullets indicate a list of items when the sequence of the items is not important.

1 The hand points to information that requires special attention.

h A question mark directs you to a software help system with related information.

f The feet direct you to another document or website with related information.

c A caution calls attention to a condition or possible situation that can damage or
destroy the product or your work.

w A warning calls attention to a condition or possible situation that can cause you
injury.

The envelope links to the Email Subscription Management Center page on the Altera
website, where you can sign up to receive update notifications for Altera documents.

Visual Cue Meaning
Using the NicheStack TCP/IP Stack - Nios II Edition Tutorial June 2011 Altera Corporation

https://www.altera.com/subscriptions/email/signup/eml-index.jsp

	Using the NicheStack TCP/IP Stack - Nios II Edition Tutorial
	Contents
	1. Using the NicheStack TCP/IP Stack
	Introduction
	Hardware and Software Requirements
	Tutorial Files
	Hardware Design Files
	Software Files

	Software Development Flow
	Creating a New Nios II Project
	Configuring the BSP
	Examining the Nios II Simple Socket Server Project Files
	Building and Running the Nios II Simple Socket Server Project
	Interacting with the Nios II Simple Socket Server

	Nios II Simple Socket Server Overview
	Software Naming Conventions
	Software Architecture
	MicroC-OS/II Resources
	Tasks
	Inter-Task Communication Resources

	NicheStack TCP/IP Stack Initialization
	Nios II Simple Socket Server Implementation Details

	Important NicheStack TCP/IP Stack Concepts
	Error Handling
	NicheStack TCP/IP Stack Default Task Creation
	Creating Tasks that Use the NicheStack TCP/IP Stack Sockets Interface
	Task Priorities in the Nios II Simple Socket Server Design
	MicroC/OS-II Internal Tasks
	NicheStack TCP/IP Stack Internal Tasks
	Networking Initialization Task
	User Networking Tasks
	User Non-Networking Tasks
	PHY Monitoring Task

	Task Stack Size

	Where to Go Next

	A. Hardware Setup Details
	Introduction
	Network Connection

	Additional Information
	Document Revision History
	How to Contact Altera
	Typographic Conventions

