
Accelerator Functional Unit (AFU)
Developer’s Guide

Updated for Intel® Acceleration Stack: 1.0 Production

Subscribe
Send Feedback

UG-20114 | 2018.04.11
Latest document on the web: PDF | HTML

https://www.altera.com/bin/rssdoc?name=nms1512265268234
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Accelerator%20Functional%20Unit%20(AFU)%20Developer%E2%80%99s%20Guide%20(UG-20114%202018.04.11)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.altera.com/en_US/pdfs/literature/ug/ug-afu-dev-v1-0.pdf
https://www.altera.com/documentation/nms1512265268234.html

Contents

1. About this Document.. 3
1.1. Intended Audience...3
1.2. Conventions..3
1.3. Related Documentation.. 3
1.4. Acronym List for Accelerator Functional Unit Developer’s Guide....................................4
1.5. Acceleration Glossary... 5

2. Introduction... 6
2.1. Getting Started with the Acceleration Stack...6

2.1.1. Development Environment References..6
2.1.2. FPGA Tools and IP Requirements..7

2.2. Base Knowledge and Skills Prerequisites... 7

3. Getting Started with AFU Development...8

4. Custom AFU Development...9
4.1. AFU Integration within the Acceleration Stack..9

4.1.1. The FPGA Interface Manager (FIM)...9
4.1.2. The AFU PR Regions...9

4.2. Intel Quartus Prime Pro Edition Flow...10
4.3. Designing and Compiling AFUs...10

4.3.1. Available Resources in the PR Region.. 11
4.3.2. AFU Project Structure... 11
4.3.3. AFU Design Structure... 12
4.3.4. Utilizing Intel FPGA Basic Building Blocks (BBBs).. 12
4.3.5. Partial Reconfiguration Design Guidelines.. 13
4.3.6. AFU Design Guidelines..13
4.3.7. Using the Scripts to Generate AFs.. 15

4.4. Using the Packager to Update Metadata.. 16

5. AFU Functional Verification...17

6. AFU In-System Debug...18
6.1. Remote Signal Tap Setup and Use.. 18

6.1.1. Instrumenting the AFU Design for Signal Tap... 18
6.1.2. Enable Remote Debug and Signal Tap... 19
6.1.3. Generate the Remote Debug Enabled AF... 20
6.1.4. Prepare the Remote Debug Host.. 20
6.1.5. Running a Remote Debug Session.. 20
6.1.6. Remote Debug Guidelines... 22
6.1.7. Troubleshooting Remote Debug Connections..23

7. Document Revision History for Accelerator Functional Unit (AFU) Developer’s Guide... 25

Contents

Accelerator Functional Unit (AFU) Developer’s Guide
2

1. About this Document
This document serves as a hardware developers guide for developing Accelerator
Functional Units (AFUs) for the Intel Acceleration Stack for Intel Xeon® CPU with
FPGAs product, hereafter referred to as the Acceleration Stack.

1.1. Intended Audience

The intended audience consists of FPGA RTL designers developing AFUs for the
Acceleration Stack on the Intel Programmable Acceleration Card with Intel Arria® 10
GX FPGA (referred to as Intel PAC with Intel Arria 10 GX FPGA throughout this
document) hardware platform.

1.2. Conventions

Table 1. Document Conventions

Convention Description

Precedes a command that indicates the command is to be
entered as root.

$ Indicates a command is to be entered as a user.

This font Filenames, commands, and keywords are printed in this
font. Long command lines are printed in this font. Although
long command lines may wrap to the next line, the return is
not part of the command; do not press enter.

<variable_name> Indicates the placeholder text that appears between the
angle brackets must be replaced with an appropriate value.
Do not enter the angle brackets.

1.3. Related Documentation

Table 2. Item Description

Item Description

Intel Acceleration Stack Quick Start Guide for
Intel Programmable Acceleration Card with Intel
Arria 10 GX FPGA

This document describes the Acceleration Stack and provides instruction
for hardware and software installation and setup required for
development with the stack.

Acceleration Stack for Intel Xeon CPU with
FPGAs Core Cache Interface (CCI-P) Reference
Manual

This document describes the CCI-P protocol and requirements placed on
AFUs.

continued...

UG-20114 | 2018.04.11

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus
and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other
countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2008
Registered

https://www.altera.com/documentation/dnv1485190478614.html
https://www.altera.com/documentation/dnv1485190478614.html
https://www.altera.com/documentation/dnv1485190478614.html
https://www.altera.com/documentation/buf1506187769663.html
https://www.altera.com/documentation/buf1506187769663.html
https://www.altera.com/documentation/buf1506187769663.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

Item Description

Intel Accelerator Functional Unit (AFU)
Simulation Environment (ASE) User Guide

This document provides instructions on how to use the Intel Accelerator
Functional Unit (AFU) Simulation Environment (ASE).

Open Programmable Acceleration Engine (OPAE)
Tools Guide

This user guide documents the utilities provided in the Open
Programmable Acceleration Engine (OPAE) software component of the
Acceleration Stack.

Design Debugging with the Signal Tap Logic
Analyzer

This documentation describes Signal Tap and its use for general FPGA
debug and provides a baseline reference for remote Signal Tap debug of
AFUs.

1.4. Acronym List for Accelerator Functional Unit Developer’s Guide

Table 3. Acronyms

Acronyms Expansion Description

AFU Accelerator Functional Unit Hardware Accelerator implemented in
FPGA logic which offloads a
computational operation for an
application from the CPU to improve
performance.

AF Accelerator Function Compiled Hardware Accelerator image
implemented in FPGA logic that
accelerates an application. An AFU and
associated AFs may also be referred to
as GBS (Green-Bits, Green BitStream)
in the Acceleration Stack installation
directory tree and in source code
comments.

API Application Programming Interface A set of subroutine definitions,
protocols, and tools for building
software applications.

ASE AFU Simulation Environment Co-simulation environment that allows
you to use the same host application
and AF in a simulation environment.
ASE is part of the Intel Acceleration
Stack for FPGAs.

CCI-P Core Cache Interface CCI-P is the standard interface AFUs
use to communicate with the host.

FIU FPGA Interface Unit FIU is a platform interface layer that
acts as a bridge between platform
interfaces like PCIe*, UPI and AFU-side
interfaces such as CCI-P.

FIM FPGA Interface Manager The FPGA hardware containing the
FPGA Interface Unit (FIU) and external
interfaces for memory, networking,
etc.
The FIM may also be referred to as
BBS (Blue-Bits, Blue BitStream) in the
Acceleration Stack installation directory
tree and in source code comments.
The Accelerator Function (AF)
interfaces with the FIM at run time.

NLB Native Loopback The NLB performs reads and writes to
the CCI-P link to test connectivity and
throughput.

continued...

1. About this Document

UG-20114 | 2018.04.11

Accelerator Functional Unit (AFU) Developer’s Guide
4

https://opae.github.io/0.13.0/docs/ase_userguide/ase_userguide.html
https://opae.github.io/0.13.0/docs/ase_userguide/ase_userguide.html
https://opae.github.io/0.13.0/docs/fpga_tools/fpgainfo/fpgainfo.html
https://opae.github.io/0.13.0/docs/fpga_tools/fpgainfo/fpgainfo.html
https://www.altera.com/documentation/jbr1437428483891.html#mwh1410384469524
https://www.altera.com/documentation/jbr1437428483891.html#mwh1410384469524

Acronyms Expansion Description

OPAE Open Programmable Acceleration
Engine

The OPAE is a software framework for
managing and accessing AFs.

PR Partial Reconfiguration The ability to dynamically reconfigure a
portion of an FPGA while the remaining
FPGA design continues to function.

TCP Transmission Control Protocol TCP is a standard internet protocol that
defines how to establish and maintain
a network conversation through which
application programs can exchange
data.

1.5. Acceleration Glossary

Table 4. Acceleration Stack for Intel Xeon CPU with FPGAs Glossary

Term Abbreviation Description

Intel Acceleration Stack for Intel Xeon
CPU with FPGAs

Acceleration Stack A collection of software, firmware and
tools that provides performance-
optimized connectivity between an
Intel FPGA and an Intel Xeon
processor.

Intel Programmable Acceleration Card
with Intel Arria 10 GX FPGA

Intel PAC with Intel Arria 10 GX FPGA PCIe accelerator card with an Intel
Arria 10 FPGA. Programmable
Acceleration Card is abbreviated PAC.
Contains an FPGA Interface Manager
(FIM) that pairs with an Intel Xeon
processor over PCIe bus.

Intel Xeon Scalable Platform with
Integrated FPGA

Integrated FPGA Platform Intel Xeon plus FPGA platform with the
Intel Xeon and an FPGA in a single
package and sharing a coherent view
of memory via the Ultra Path
Interconnect (UPI).

1. About this Document

UG-20114 | 2018.04.11

Accelerator Functional Unit (AFU) Developer’s Guide
5

2. Introduction
This chapter outlines the prerequisites for AFU development.

2.1. Getting Started with the Acceleration Stack

Before using this guide, refer to the Intel Acceleration Stack Quick Start Guide for
Intel Programmable Acceleration Card with Intel Arria 10 GX FPGA, referred to as
Quick Start Guide throughout this document. The Quick Start Guide provides an
overview of the Acceleration Stack and provides instruction for installation and setup
of hardware and software components of the stack. It is essential to familiarize
yourself with the concepts developed for the Acceleration Stack and to complete the
installation and setup procedures covered in the Quick Start Guide.

This guide for AFU development builds on the concepts and environment setup
established in the Quick Start Guide.

Related Information

Intel Acceleration Stack Quick Start Guide for Intel Programmable Acceleration Card
with Intel Arria 10 GX FPGA

2.1.1. Development Environment References

Throughout this guide, the following two references taken from the Quick Start Guide
are used to refer to the Acceleration Stack installation:

• $DCP_LOC—This reference points to the directory where the Acceleration Stack
release tarball was unarchived as instructed in the Quick Start Guide.

• $OPAE_LOC—This reference points to the directory where the OPAE software
source code included in the Acceleration Stack release tarball was unarchived as
instructed in the Quick Start Guide.

All code and command line references and examples in this guide assume your PATH
environment variable includes the following locations to executables in the
Acceleration Stack installation:

• $DCP_LOC/bin—This location contains the utilities and helper scripts included in
the Acceleration Stack release tarball:

— run.sh

— clean.sh

UG-20114 | 2018.04.11

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus
and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other
countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2008
Registered

https://www.altera.com/documentation/dnv1485190478614.html
https://www.altera.com/documentation/dnv1485190478614.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

2.1.2. FPGA Tools and IP Requirements

Generating Accelerator Function (AF) for OPAE requires the following software and IP:

• Intel Quartus® Prime Pro Edition software version 17.0.0 (only version supported)

• Intel FPGA PCI Express SR-IOV Block IP license

• python2-jsonschema package from the epel repository

For requirements when using ASE for AFU functional verification, refer to the Intel
Accelerator Functional Unit (AFU) Simulation Environment (ASE) User Guide.

Related Information

Intel Accelerator Functional Unit (AFU) Simulation Environment (ASE) User Guide

2.2. Base Knowledge and Skills Prerequisites

The Acceleration Stack is an advanced application of FPGA technology. Most of the
platform-level complexity has been abstracted away for the AFU developer by the
FPGA Interface Manager (FIM) in the FPGA static region. This guide assumes the
following FPGA logic design-related knowledge and skills:

• Familiarity with PR compilation flows, including the Intel Quartus Prime Pro Edition
PR flow, concepts of physical and logical partitioning in the FPGA, module
boundary best practices, and resource restrictions.

The physical and logical partitioning of the FIM static region and the PR regions for
AFUs has already been done. User AFUs conveniently plug-in to the structure
defined by the Acceleration Stack with a well-structured set of standard interface
signals to the FIM. This level of abstraction allows you to concentrate on your area
of expertise in end application space by minimizing time and effort on the PR flow
itself. The Acceleration Stack provides helper scripts to automate the PR flow
during compilation of the AFU RTL for generating an AF for use by OPAE. The
Acceleration Stack has already laid out the structure, and familiarity with PR flows
is a plus for design of an AFU within this predetermined structure.

• Knowledge and skills in static timing closure, including familiarity and skill with the
TimeQuest Timing Analyzer tool in Intel Quartus Prime Pro Edition, applying timing
constraints, Synopsys* Design Constraints (.sdc) language and Tcl scripting, and
design methods to close on timing critical paths.

• Knowledge and skills with industry standard RTL simulation tools supported by the
Acceleration Stack. For more information, refer to the Intel Accelerator Functional
Unit (AFU) Simulation Environment (ASE) Quick Start Guide.

• Knowledge and skill with the Signal Tap Logic Analyzer tool in the Intel Quartus
Prime Pro Edition software.

Related Information

Intel Accelerator Functional Unit (AFU) Simulation Environment (ASE) User Guide

2. Introduction

UG-20114 | 2018.04.11

Accelerator Functional Unit (AFU) Developer’s Guide
7

https://opae.github.io/0.13.0/docs/ase_userguide/ase_userguide.html
https://opae.github.io/0.13.0/docs/ase_userguide/ase_userguide.html

3. Getting Started with AFU Development

This chapter guides you through the process to generate an AF for the nlb_mode_0
example AFU provided in the Acceleration Stack installation. Successful completion of
the steps in this chapter quickly verifies your AFU development environment using a
known-good design.

Build the nlb_mode_0 example AFU by invoking the run.sh script from a terminal
window as shown in Example 1.

Note: This step takes about 45 minutes to complete.

Example 1. Compile nlb_mode_0 Example AFU

$ cd $DCP_LOC/hw/samples/nlb_mode_0
$ $DCP_LOC/bin/run.sh

When the shell script completes, it indicates successful generation of the AF:
$DCP_LOC/hw/samples/nlb_mode_0/nlb_400.gbs.

You can optionally repeat the steps in the Quick Start Guide to run the hello_fpga
host application with the newly generated AF.

You can optionally restore the fresh state of the nlb_mode_0 example AFU design by
invoking the clean.sh script from a terminal window as shown in Example 2.

Example 2. Restore the nlb_mode_0 Example AFU Design

$ cd $DCP_LOC/hw/samples/nlb_mode_0
$ $DCP_LOC/bin/clean.sh

Successfully compiling the nlb_mode_0 example AFU verifies that your environment
is setup and ready to begin developing your own custom AFUs.

UG-20114 | 2018.04.11

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus
and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other
countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2008
Registered

http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

4. Custom AFU Development

4.1. AFU Integration within the Acceleration Stack

To facilitate dynamically loading AFUs, the Acceleration Stack utilizes a partial
reconfiguration (PR) scheme. The FIM contains one or more PR regions for loading
AFUs and a static region that provides services and resources to loaded AFUs.

4.1.1. The FPGA Interface Manager (FIM)

The FIM includes the static region and one or more PR region partitions for loading
AFUs from OPAE. The static region provides services to AFUs loaded in PR regions that
include a host connection via CCI-P protocol over PCIe SR-IOV, a local pool of SDRAM
memory, and clock and reset resources. The FIM static region also provides services to
OPAE for dynamically loading AFUs and performing system management tasks (for
example, version identification).

The FIM is part of the Intel PAC with Intel Arria 10 GX FPGA hardware platform and is
not modifiable.

The PR regions in the FIM are undefined AFUs preconfigured upon power up – host
applications must use OPAE to load AFUs into the PR regions.

Note: The 1.0 Production release of the FIM supports one PR region.

The FIM bitstream is included in the Acceleration Stack installation and initially
configures the FPGA at power up from configuration flash residing on the Intel PAC
with Intel Arria 10 GX FPGA.

For instructions on flashing the on-board configuration flash with the FIM bitstream,
refer to the Quick Start Guide.

Related Information

Intel Acceleration Stack Quick Start Guide for Intel Programmable Acceleration Card
with Intel Arria 10 GX FPGA

4.1.2. The AFU PR Regions

Host software uses OPAE utilities and APIs to load an AF into a PR region in the FIM .
An AF is the combination of an AFU PR bitstream and associated AFU metadata. The
AFU PR bitstream is the output from Intel Quartus Prime Pro Edition PR compilation of
your AFU RTL design with the FIM design database provided in the Acceleration Stack
installation. The AFU metadata is used to provide OPAE information on AFU
characteristics and operational parameters and is defined in a separate JSON file. The
Packager utility included in the Acceleration Stack installation generates the AF from

UG-20114 | 2018.04.11

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus
and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other
countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2008
Registered

https://www.altera.com/documentation/dnv1485190478614.html
https://www.altera.com/documentation/dnv1485190478614.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

the AFU PR bitstream and AFU metadata. It is possible to have several AF variations
for a given AFU revision by combining its PR bitstream with unique metadata using the
Packager utility.

The 1.0 Production release supports dynamically swapping multiple AFUs within a
single PR region for each Intel PAC with Intel Arria 10 GX FPGA installed in a system.

The rest of this chapter describes how to design an AFU within the platform and
services provided by the FIM static region, compile an AFU PR bitstream compatible
with the FIM, and generate an AF for use by OPAE.

For usage information on the Packager utility and JSON file metadata format,
supported keyword parameters, and minimum metadata requirements, refer to the
OPAE Tools Guide.

Related Information

Open Programmable Acceleration Engine (OPAE) Tools Guide

4.2. Intel Quartus Prime Pro Edition Flow

This release of the Acceleration Stack is designed to work with Intel Quartus Prime Pro
Edition, version 17.0.0.

The Intel Quartus Prime Pro Edition partial reconfiguration (PR) compilation flow is
used to compile AFUs in combination with the FIM design database to generate AFU PR
bitstreams. The PR compilation flow is supported only at the command line using the
scripts provided with the Acceleration Stack – you cannot use the Intel Quartus Prime
Pro Edition GUI to generate a PR bitstream for the AFU.

The shell script, $DCP_LOC/bin/run.sh, implements the necessary command line
steps.

You can use the GUI point tools in Intel Quartus Prime Pro Edition for tasks such as
TimeQuest timing analysis, Chip Planner view, adding debug instances and nodes, and
viewing compilation reports.

4.3. Designing and Compiling AFUs

To generate an AFU PR bitstream, AFU developers should perform synthesis, place and
route, and timing closure on their AFU while importing the FIM design database from
the library as part of the PR compilation performed by the run.sh script.

The Acceleration Stack installation includes example AFU designs in the
$DCP_LOC/hw/samples directory.

4. Custom AFU Development

UG-20114 | 2018.04.11

Accelerator Functional Unit (AFU) Developer’s Guide
10

https://opae.github.io/0.13.0/docs/ase_userguide/ase_userguide.html

The overall flow to generate an AFU PR bitstream is as follows:

• The Acceleration Stack installation provides the compiled database for the FIM and
an Intel Quartus Prime PR build project structure to support integrating your AFU
within the framework provided by the FIM static region.

• The FIM design database and the Intel Quartus Prime PR build project structure
reside in $DCP_LOC/hw/lib.

Note: Do not modify these library files.

• The Intel Quartus Prime PR build project contains two revisions:

— afu_synth

— afu_fit

• The revision afu_synth is used to synthesize the user AFU.

• The revision afu_fit is used to generate an AFU PR bitstream by importing the
qdb of the FIM from the library and the synthesized snapshot of your AFU from
the afu_synth revision.

• AFU developers should close timing on their AFU on the afu_fit revision.

• Only script-based steps are supported for your AFU synthesis, place and route
(PAR), and bitstream generation. GUI-based steps can be used for timing analysis,
adding debug instances, and viewing compilation results.

• To run synthesis of multiple AFUs or PAR jobs in parallel, create multiple copies of
the AFU’s project directory.

4.3.1. Available Resources in the PR Region

The PR region in the FIM has the following FPGA resources available to the AFU
design:

• ALMs: 382,273

• M20Ks: 2468

• DSP Blocks: 1402

4.3.2. AFU Project Structure

An AFU project is a design directory that contains the following required components:

• A subdirectory named "hw".

• A Quartus settings file (.qsf) located in the “hw” subdirectory, named “afu.qsf”.

For example, the AFU project directory for the hello_afu example included in the
Acceleration Stack installation is located at $DCP_LOC/hw/samples/hello_afu. The
required settings file is located at $DCP_LOC/hw/samples/hello_afu/hw/
afu.qsf.

Place all Intel Quartus Prime settings for compiling your AFU design in the afu.qsf
file.

At minimum, the afu.qsf settings file must point to all AFU design flles, including
RTL source, Qsys subsystems (.qsys), IP variations (.ip), timing constraint files
(.sdc), Signal Tap files (.stp), and Tcl scripts (.tcl). AFU design files can be located

4. Custom AFU Development

UG-20114 | 2018.04.11

Accelerator Functional Unit (AFU) Developer’s Guide
11

anywhere in the filesystem that can be resolved at Intel Quartus Prime PR compile
time from the path references in the afu.qsf file. However, the following additional
project structure facilitates the use of the OPAE tools and the ASE:

• Place RTL source and .json files in <afu_project_dir>/hw/rtl

• Place simulation scripts for ASE in <afu_project_dir>/hw/sim

• Place the host OPAE application source and build scripts in
<afu_project_dir>/sw

Relative path references to AFU design files in afu.qsf must have the following format:

../<path-to-design-file-relative-to-afu-proj-dir>

For example, the AFU design files for the hello_afu example are located in
$DCP_LOC/hw/samples/hello_afu/hw/rtl. The hello_afu example’s afu.qsf
file points to the top level AFU RTL source file, afu.sv, with the following setting:

set_global_assignment -name SYSTEMVERILOG_FILE “../hw/rtl/afu.sv”

Where for this example <path-to-design-file-relative-to-afu-proj-dir>
is hw/rtl/afu.sv.

4.3.3. AFU Design Structure

The top-level wrapper for all AFU designs is provided by the ccip_std_afu module,
which is defined in the ccip_std_afu.sv file included in the Acceleration Stack
installation. All AFU top-level logic and submodules must be instanced within the
ccip_std_afu top-level wrapper module. Your AFU is restricted to the module port
list defined by ccip_std_afu, which includes all FIM clock and reset resources, and
the FIU and DDR4 bank interfaces. There are no restrictions to the design hierarchy
beneath this top-level wrapper.

Your AFU project must include the ccip_std_afu.sv source file by reference in the
afu.qsf file. This file is included in the design file sets of the example AFUs included
in the Acceleration Stack installation. You can either directly refer to
ccip_std_afu.sv or copy it over to your AFU design file set from the hello_afu
example’s design file directory: $DCP_LOC/hw/samples/hello_afu/hw/rtl.

The hello_afu example provides a simple example of how to implement an AFU
design in the ccip_std_afu.sv top-level wrapper file.

The nlb_mode_0 example AFU provides an example for a more involved AFU that
includes multiple RTL source files and Synopsys Design Contraints (.sdc) files for the
AFU.

4.3.4. Utilizing Intel FPGA Basic Building Blocks (BBBs)

Intel FPGA Basic Building Blocks (BBBs) are reference designs of common functions
that can be used in AFU designs. These references are provided as-is. They are not
validated by Intel. The available BBBs, including documentation, are maintained at the
GitHub site.

Related Information

Basic Building Blocks (BBB) for OPAE-managed Intel FPGAs

4. Custom AFU Development

UG-20114 | 2018.04.11

Accelerator Functional Unit (AFU) Developer’s Guide
12

https://github.com/OPAE/intel-fpga-bbb

4.3.5. Partial Reconfiguration Design Guidelines

• The bitstreams used for Partial reconfiguration should be generated using the
script-method provided by the $DCP_LOC/bin/run.sh script.

• Partial reconfiguration switches the PR region from one AFU to another AFU. Any
software application exercising an AFU in the PR region should be terminated
before initiating PR with OPAE to switch in a new AFU. This includes the remote
debug feature.

• LAB/MLAB with initial content is not supported either in RAM mode or in ROM
mode within the AFU. There are no such restrictions on M20K block usage.

• When using M20K or MLAB on-chip memory blocks with initialized contents,
implement clock enable logic in the AFU to avoid spurious writes into the
memories upon exit of PR.

• Logic in the AFU should not depend on initial values or states coded through initial
statements.

• After partial reconfiguration, the registers in the PR region (AFU) come up in an
indeterminate state. To restore initial condition, a reset pulse is generated at the
CCI-P interface after PR. AFUs must use this reset to restore all initial conditions.

• The PR region must contain only core resources like LABs, RAMs and DSPs. PLLs
and Clock control blocks cannot be instantiated in the PR region.

• If PR compilation fails due to M20K memory block overutilization, add the
following quartus.ini setting to enable a more aggressive conversion to
available MLABs during compilation:

fit_restrict_meab_usage=2394

If a quartus.ini file does not already exist in the AFU project directory's build
subdirectory (<afu_project_dir>/build, created after invoking the run.sh
script), then use your preferred text editor to create it with the above setting
added on a single line.

• If PR compilation results in timing violations in the FIM static region, retry PR
compilation with a different fitter seed value.

4.3.6. AFU Design Guidelines

Follow these guidelines when designing a custom AFU:

4.3.6.1. General Guidelines

• The AFU build flow supports the following RTL language standards:

— SystemVerilog 2005

— VHDL 1993

• Reset and initialize all output registers.

• Generate an AFU ID for new AFUs using the third-party tool, UUID Generator.

Related Information

• Intel Quartus Prime Pro Edition Handbook Volume 1 Design and Compilation
For more information on RTL language standards.

4. Custom AFU Development

UG-20114 | 2018.04.11

Accelerator Functional Unit (AFU) Developer’s Guide
13

https://www.altera.com/documentation/jbr1437426657605.html

• Acceleration Stack for Intel Xeon CPU with FPGAs Core Cache Interface (CCI-P)
Reference Manual

For more information on generating AFU IDs.

4.3.6.2. Utilizing Clock Resources

The FIM provides several clock resources for use by AFUs. One set of clock resources
is the user clock group, which includes uClk_usr and uClk_usrDiv2. Unlike pClk
and its derivatives whose frequencies are fixed by the CCI-P Specification, the user
clocks can be programmed for a range of frequencies supported by the AFU.

User clocks get provisioned by OPAE when an AF is loaded by the fpgaconf utility.
When the fpgaconf utility loads an AF, it will configure the PLL in the FIM that
sources the user clocks with the frequency specified by a key:value pair found in the
AF metadata generated by the packager utility. The desired user clock frequency
key:value pair can be specified in a .json file or can be specified with a command
line option (overrides entry in the .json file) to the packager utility. You can use the
packager to generate AFs with unique metadata user clock frequency values for a
single AFU PR bitstream.

The FIM reset resource, pck_cp2af_softReset, is not released until all clock
resources are stable and locked, including the user clocks.

The AFU design must close timing on the user clocks at the maximum frequency to be
supported by the AFU. Place associated clock timing constraints in a .sdc file, and
refer to the .sdc file in the afu.qsf file.

For usage information on the Packager utility and .json file metadata format,
supported keyword parameters, and minimum metadata requirements, refer to the
OPAE Tools User Guide.

Related Information

Open Programmable Acceleration Engine (OPAE) Tools Guide

4.3.6.3. Interfacing with the FPGA Interface Unit (FIU)

The The Intel Acceleration Stack for Intel Xeon CPU with FPGAs Core Cache Interface
(CCI-P) Reference Manual documents all the requirements on an AFU interfacing with
the FIU in the FIM over the CCI-P protocol as well as requirements for CSR and
address mapping. An AFU design must meet all the requirements specified in the
following sections of the CCI-P reference manual:

• CCI-P Interface

• AFU Requirements

• Device Feature List

The above sections in the CCI-P reference manual include requirements unique to the
Intel Xeon Processor with Integrated FPGA (referred to as Integrated FPGA Platform
throughout this document) hardware platform, but most of the information applies to
the Intel PAC with Arria 10 platform. The notable differences between the two
platforms are that the PAC does not have a UPI channel or second PCIe link, and no
accelerator cache is implemented in the FIM.

4. Custom AFU Development

UG-20114 | 2018.04.11

Accelerator Functional Unit (AFU) Developer’s Guide
14

https://www.altera.com/documentation/buf1506187769663.html
https://www.altera.com/documentation/buf1506187769663.html
https://opae.github.io/0.13.0/docs/ase_userguide/ase_userguide.html

The hello_afu example AFU included with the Acceleration Stack provides an
example implementation of a simple Device Feature List that meets the requirements
for an AFU as specified by the CCI-P reference manual. The nlb_mode_0 and
dma_afu example AFUs provide example implementations of more featured Device
Feature Lists.

For more information about the Avalon®-MM interface, refer to the Avalon Memory-
Mapped Interfaces.

Related Information

• CCI-P Interface

• AFU Requirements

• Device Feature List

• Avalon Memory-Mapped interfaces

4.3.6.4. Accessing Local DDR4 SDRAM

The AFU accesses local memory on the PAC through Avalon Memory-Mapped (Avalon-
MM) slave interfaces provided by the FIM. Each bank has its own 512-bit wide Avalon-
MM slave interface and operates at 267 MHz. Each bank interface is synchronous to its
own 267 MHz clock source provided by the FIM, which AFUs must use to synchronize
accesses to DDR4. The DDR4 Avalon-MM slave interfaces in the FIM support single
bursts. There is no support for response status or posted writes.

4.3.7. Using the Scripts to Generate AFs

The Acceleration Stack installation includes two scripts to facilitate Intel Quartus Prime
Pro Edition PR compilation of AFUs. These scripts are located in the $DCP_LOC/bin
directory.

4.3.7.1. run.sh

This script performs AFU synthesis on the afu_synth revision, fits the synthesis
snapshot of the AFU and the final snapshot of the FIM design database, and invokes
the Packager to generate the AF file (.gbs).

For example, the command sequence shown in Example 3 compiles the hello_afu
example AFU and generates an AF.

Example 3. Compile hello_afu Example AFU

$ cd $DCP_LOC/hw/samples/hello_afu
$ run.sh

By default, the run.sh script will generate the loadable AFU image using the first
matching .json metadata file found relative to the AFU project directory: hw/rtl/
.json, hw/.json, *.json

You can explicitly specify a particular .json file to use for generating the AF by
passing a positional argument as shown in Example 4.

4. Custom AFU Development

UG-20114 | 2018.04.11

Accelerator Functional Unit (AFU) Developer’s Guide
15

https://www.altera.com/documentation/buf1506187769663.html#npl1506232343683
https://www.altera.com/documentation/buf1506187769663.html#jnp1506351562988
https://www.altera.com/documentation/buf1506187769663.html#iqj1506356226929
https://www.altera.com/documentation/nik1412467993397.html#nik1412467936351

Example 4. Pass an Argument to a Specific .json File

$ cd $DCP_LOC/hw/samples/hello_afu
$ run.sh <my-alternate-json-location>/<filename>.json

If the .json filename starts with the “-“ character, pass the argument with a
preceding “--“.

The run.sh script supports the following options:

--packager|-p <path-to-the-packager-binary>/packager

By default, run.sh relies on your PATH environment variable to point to the
Packager binary located in $DCP_LOC/bin. If PATH has not been setup in this way,
use the –packager|-p option to explicitly point to the location of the Packager
binary for generating the AF.

--bbs-lib|-l <path-to-the-bbs-database>/lib

By default, run.sh finds the FIM design database using its relative path in the
Acceleration Stack installation. As installed, the FIM design database is located at
$DCP_LOC/hw/lib, but if this path or the run.sh script’s relative location to it has
been altered, use the –-bbs-lib|-l option to point to the FIM design database.

4.3.7.2. clean.sh

When run from the AFU’s project directory, the clean.sh script will restore the AFU
design by deleting all Intel Quartus Prime Pro Edition compilation output from an
invocation of the run.sh script. The clean.sh script takes no arguments or options.
Example 5 shows an example of using the clean.sh script.

Example 5. Clean Up the AFU Design Directory

$ cd $DCP_LOC/hw/samples/hello_afu
$ clean.sh

4.4. Using the Packager to Update Metadata

The run.sh script invokes the Packager after compiling an AFU to generate an AF.
For situations where you want to either update the metadata in an existing AF or
create an additional AF with unique metadata without recompiling the AFU, run the
Packager standalone.

The Packager utility is included in the OPAE installation.

For more information, refer to the OPAE Tools Guide.

Related Information

Open Programmable Acceleration Engine (OPAE) Tools Guide

4. Custom AFU Development

UG-20114 | 2018.04.11

Accelerator Functional Unit (AFU) Developer’s Guide
16

https://opae.github.io/0.13.0/docs/ase_userguide/ase_userguide.html

5. AFU Functional Verification
The AFU supports functional verification of AFU RTL code using host application C code
developed for the OPAE API without the need for Intel PAC with Intel Arria 10 GX FPGA
hardware. The ASE virtualizes the AFU’s physical link with the host, models certain
aspects of the OPAE host memory model, and supports communication between the
OPAE host application and supported RTL simulation tools used to emulate the AFU
running on actual Intel Programmable Acceleration Card (PAC) hardware.

ASE is useful for verifying your AFU’s interoperability with the rest of the Acceleration
Stack using a quick, iterative functional debug environment to minimize time spent in
subsequent portions of the AFU development flow that involve more time-intensive
steps (for example, PAR, timing closure). ASE also enables a more cost-efficient
development environment by removing the dependency on PAC hardware for early
functional debug of AFU interoperability within the Acceleration Stack.

Related Information

• Intel Accelerator Functional Unit (AFU) Simulation Environment (ASE) User Guide
For more information about ASE.

• Intel Accelerator Functional Unit (AFU) Simulation Environment (ASE) Quick Start
User Guide

UG-20114 | 2018.04.11

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus
and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other
countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2008
Registered

https://opae.github.io/0.13.0/docs/ase_userguide/ase_userguide.html
https://www.altera.com/documentation/uux1498689964626.html
https://www.altera.com/documentation/uux1498689964626.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

6. AFU In-System Debug
The Acceleration Stack provides a remote Signal Tap facility. Use remote Signal Tap to
debug an AFU in-system. The Signal Tap II Logic Analyzer, included in the Intel
Quartus Prime Pro Edition, allows you to trigger on AFU signal events and capture
traces of signals in your AFU design. The remote capability allows for control of trigger
conditions and upload of captured signal traces from a networked workstation running
the Signal Tap GUI.

Signal Tap is an in-system logic analyzer that you can use to debug FPGA logic.
Conventional (non-remote) Signal Tap uses the physical FPGA JTAG interface and a
Intel FPGA Download Cable II to bridge the Intel Quartus Prime Signal Tap application
running on a host system with the Signal Tap controller instances embedded in the
FPGA logic. With Remote Signal Tap, you can achieve the same result without
physically connecting to JTAG, which enables signal-level, in-system debug of AFUs
deployed in servers where physical access is limited.

In addition to Signal Tap, the remote debug facility in OPAE supports the following in-
system debug tools included with the Intel Quartus Prime Pro Edition:

• In-system sources and probes

• In-system Memory Content Editor

• Signal Probe

• System Console

This section describes how to generate an AF with remote Signal Tap enabled. This
section then describes how to debug a user AFU using OPAE’s mmlink utility, the
System Console utility, and Intel Quartus Prime Pro Edition.

The nlb_mode_0_stp variation of the nlb_400 example AFU is used to illustrate how
to enable and use remote Signal Tap.

Related Information

Design Debugging with the Signal Tap Logic Analyzer
For more information about Signal Tap.

6.1. Remote Signal Tap Setup and Use

6.1.1. Instrumenting the AFU Design for Signal Tap

To add Signal Tap trigger and data nodes from signals in your AFU, follow the method
documented in the related information for Signal Tap.

UG-20114 | 2018.04.11

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus
and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other
countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2008
Registered

https://www.altera.com/documentation/jbr1437428483891.html#mwh1410384469524
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

For working within the PR compilation flow for compiling the Signal Tap-enabled AFU,
follow these flow steps:

1. If the run.sh script has been run on the AFU project, skip to step 2, otherwise
copy the Intel Quartus Prime PR build project from the Acceleration Stack
installation to your AFU project directory:

$ cp -rLf $DCP_LOC/hw/lib/build <path-to-afu-proj-dir>

2. Open the Intel Quartus Prime PR build project from the Intel Quartus Prime Pro
Edition GUI:

$<path-to-afu-proj-dir>/build/dcp.qpf

Select the afu_synth revision.

If you have already run the run.sh script or otherwise ran your AFU through the
synthesis step, skip to step 4.

3. From the Quartus GUI, perform an Analysis & Elaboration on your AFU RTL to
generate a netlist from which to add debug nodes with the Signal Tap tool.

4. Invoke the Signal Tap tool from the Intel Quartus Prime Pro Edition GUI and add
your AFU signals for trigger/data debug nodes as usual.

5. When done adding debug nodes, save the .stp file and optionally choose to add
the .stp file to the Intel Quartus Prime Pro Edition project and enable Signal Tap
for the project.

6. Exit Signal Tap.

7. Exit the Intel Quartus Prime Pro Edition GUI.

In the nlb_mode_0_stp example, <path-to-afu-proj-dir> is $DCP_LOC/hw/
samples/nlb_mode_0_stp.

The nlb_mode_0_stp example already has a .stp file: $DCP_LOC/hw/samples/
nlb_mode_0_stp/hw/par/stp_basic.stp.

6.1.2. Enable Remote Debug and Signal Tap

Signal Tap must be enabled in the AFU afu.qsf file. You must add the following
settings to the afu.qsf file even if you enabled Signal Tap when saving the .stp file
and exiting the Signal Tap GUI.

The following shows the required Intel Quartus Prime settings in afu.qsf:

Quartus Settings for Enabling

set_global_assignment -name VERILOG_MACRO INCLUDE_REMOTE_STP

set_global_assignment -name SIGNALTAP_FILE \
../<path-relative-to-afu-proj-dir>/<stp-filename>.stp

set_global_assignment -name ENABLE_SIGNALTAP ON

set_global_assignment -name USE_SIGNALTAP_FILE \
../<path-relative-to-afu-proj-dir>/<stp-filename>.st

The nlb_mode_0_stp example already has the above settings added to its afu.qsf
file located in $DCP_LOC/hw/samples/nlb_mode_0_stp/hw.

6. AFU In-System Debug

UG-20114 | 2018.04.11

Accelerator Functional Unit (AFU) Developer’s Guide
19

6.1.3. Generate the Remote Debug Enabled AF

After adding the above settings to the AFU's afu.qsf file, generate the remote debug
enabled AF:

$ cd <afu-proj-dir>
$ run.sh

The nlb_mode_0_stp example already has a remote debug enabled AF :
$DCP_LOC/hw/samples/nlb_mode_0_stp/bin/nlb_mode_0_stp.gbs.

6.1.4. Prepare the Remote Debug Host

Copy the following files from the Acceleration Stack installation over to a convenient
working directory on the remote debug host:

• The Signal Tap .stp file compiled with your AFU. In the case of the
nlb_mode_0_stp example AFU, the .stp file is located in the Acceleration Stack
installation as $DCP_LOC/hw/samples/nlb_mode_0_stp/hw/par/
stp_basic.stp.

• The following two files support establishing a connection on the remote debug host
to the AFU Signal Tap instances on the Intel PAC with Intel Arria 10 GX FPGA.
These files are part of the Acceleration Stack release – do not modify them.

$DCP_LOC/hw/remote_debug/mmlink_setup_profiled.tcl$DCP_LOC/hw/remote_debug/
remote_debug.sof

6.1.5. Running a Remote Debug Session

6.1.5.1. Connect to the AFU Target

Follow these steps on the debug target host with the PAC installed:

1. If not already done, load the Signal Tap-enabled AFU.

$ sudo fpgaconf $DCP_LOC/hw/samples/nlb_mode_0_stp/bin/nlb_mode_0_stp.gbs

2. Open a TCP port to accept incoming connection requests from remote debug
hosts.

$ sudo mmlink -P 3333

Follow these steps on the remote debug host:

1. Use System Console to connect to the debug target host’s TCP port for Signal
Tap debug connection on the target AFU. If the remote debug host is a Windows
platform, open a command shell to run the below commands.

$ cd <path-to-debug-working-directory>
$ system-console --rc_script=mmlink_setup_profiled.tcl
remote_debug.sof <IP-address-of-debug-target-host> 3333

The above command assumes your PATH environment variable on the remote
debug host is setup to point to the following location in the Intel Quartus Prime
Pro Edition installation:

<installation-path>/<q-edition>/sopc_builder/bin

6. AFU In-System Debug

UG-20114 | 2018.04.11

Accelerator Functional Unit (AFU) Developer’s Guide
20

where <q-edition> is "quartus" for Intel Quartus Prime Pro Edition or Intel
Quartus Prime Standard Edition. For an Intel Quartus Prime Programmer Edition
installation, <q-edition> is qprogrammer.

2. After issuing the above commands, the System Console window appears. Wait for
the “Remote system ready” message in the Tcl Console pane.

6.1.5.2. Using Signal Tap with a Remote Target Connection

Perform these steps on the remote debug host:

1. Invoke the Signal Tap GUI.

2. From File ➤ Menu, navigate to and open the .stp file you copied over from the
"Prepare the Remote Debug Host" section when you were preparing the remote
debug host for debugging the AFU.

3. Complete connecting to the Signal Tap controller instances in the target AFU by
selecting “System Console on … Sld Hub Controller System” from the
Hardware drop-down option box in the JTAG Chain Configuration pane.

4. Wait for the “JTAG ready” response.

At this point, you are ready to perform in-system debug with the Signal Tap GUI in the
same manner as with the conventional target connection method.

Related Information

• Prepare the Remote Debug Host on page 20

• Design Debugging with the Signal Tap Logic Analyzer
For more information about Signal Tap.

6.1.5.3. Stimulating the Target AFU for In-System Debug

Use host application C code software designed for the OPAE API to stimulate the AFU
and verify proper operation within the Acceleration Stack. Leave the mmlink tool
running in a separate terminal window on the debug target host while the remote
debug host is connected. The mmlink process will continuously output status to the
terminal window. Invoke OPAE host application or test software from their own
terminal windows on the debug target host.

6.1.5.3.1. Accessing the AFU in Shared Mode

When using OPAE application/test code running on the debug target host to stimulate
the AFU for the purposes of in-system debug, both the mmlink tool and your host
application/test code must have simultaneous access to the AFU. For this to happen,
any user space code calls to the fpgaOpen() OPAE API function must pass the
FPGA_OPEN_SHARED flag. The Acceleration Stack installation uses the

6. AFU In-System Debug

UG-20114 | 2018.04.11

Accelerator Functional Unit (AFU) Developer’s Guide
21

https://www.altera.com/documentation/jbr1437428483891.html#mwh1410384469524

FPGA_OPEN_SHARED flag with calls to fpgaOpen() in the source code for the
mmlink tool and the hello_fpga sample application, which enables remote debug as
delivered in the installation for the nlb_mode_0_stp example AFU stimulated by the
hello_fpga sample application without modification.

Here is an example call to fpgaOpen() for shared access to the AFU:

fpgaOpen(afc_token, &afc_handle, FPGA_OPEN_SHARED);

Refer to the following sources in the Acceleration Stack installation for examples of
using the FPGA_OPEN_SHARED flag:

$OPAE_LOC/tools/mmlink/main.cpp,$OPAE_LOC/samples/hello_fpga.c.

Any other sample applications included in the Acceleration Stack installation or host
code of your own design must use the shared flag when used to stimulate the AFU
during in-system remote debug where mmlink is required to run simultaneously.

6.1.5.4. Disconnect from the AFU Target

When you are finished debugging, follow these steps to gracefully end the debug
connection:

First, on the remote debug host…

1. Save trace captures and exit the Signal Tap GUI.

2. From the System Console File menu, click exit to disconnect from the target
AFU.

On the debug target host…

You can either keep the mmlink instance active and host debug sessions from other
remote debug hosts, or you can terminate mmlink with the <Ctl-C> key sequence
from its terminal window. If you choose to keep mmlink active, you can only debug
the currently loaded AFU. If you want to debug another AFU, you must first terminate
the active mmlink process. Before loading another AFU, make sure to terminate any
OPAE host application code accessing the current AFU.

6.1.6. Remote Debug Guidelines

• Signal Tap debug feature becomes non-functional when mmlink or System
Console applications are closed.

• When performing PR, the AFU is non-existent and cannot be debugged. Therefore,
System Console and mmlink applications should be terminated before
attempting a partial reconfiguration of the AFU. Failing to do so might cause both
PR and Signal Tap utilities to fail, taking the system into an unknown state. The
system might have to be rebooted to restore the initial condition.

• The time to upload Signal Tap trace captures increases exponentially with sample
depth. It is recommended to use sample depths less than "2K" for better Signal
Tap user experience. Remote debug would still be functional even for larger depths
but the time to upload the captured samples is significantly higher.

• System Console must be started after launching the mmlink application. If
System Console returns an error, close the mmlink application, re-invoke
mmlink, and launch System Console again.

6. AFU In-System Debug

UG-20114 | 2018.04.11

Accelerator Functional Unit (AFU) Developer’s Guide
22

6.1.7. Troubleshooting Remote Debug Connections

If you get a Failed to connect message after invoking System Console, consider
adding port tunneling. Do this when the debug target host is behind a firewall with
respect to your remote debug host is not.

On the debug target host, run mmlink as before. Note that mmlink provides an
option to specify a port number. Port 3333 is the default.

Refer to the following:

$ mmlink --port=3333

Setup port tunneling on the remote debug host. This example shows how to do so on
a Windows remote debug host using PuTTY.

Use a PuTTY configuration screen as shown in the SSH Tunneling with PuTTY figure.
For <SDP>, enter the name of the debug target host. This forwards the local port on
your Windows host 4444 to port 3333 on the debug target host.

Figure 1. SSH Tunneling with PuTTY

Then, Click Session, specify the name of the debug target host, click Save, and then
Open. Login to the debug target host. This is your tunneling session.

6. AFU In-System Debug

UG-20114 | 2018.04.11

Accelerator Functional Unit (AFU) Developer’s Guide
23

Figure 2. Save and Open the Tunneling Session
This figure specifies localhost and the port 4444.

Once the tunneling session is setup this forwarding is complete. Open a Windows
Command Window and issue the system-console command as shown in the "Save
and Open the Tunneling Session" figure.

Run the "System Console with Port Forwarding" command:

$ system-console --rc_script=mmlink_setup_profiled.tcl remote_debug.sof
localhost 4444

As before, the Quartus System Console comes up. Wait for the Remote system
ready message on the tcl console of the System Console.

6. AFU In-System Debug

UG-20114 | 2018.04.11

Accelerator Functional Unit (AFU) Developer’s Guide
24

7. Document Revision History for Accelerator Functional
Unit (AFU) Developer’s Guide

Document
Version

Intel Acceleration Stack Version Changes

2018.04.11 1.0 Production (supported with Intel Quartus
Prime Pro Edition 17.0.0)

• Replaced mention of AFU Loadable Image with
Accelerator Function (AF) across the
document.

• Removed packager utility from
$DCP_LOC/bin location in the the
Acceleration Stack release tarball in
Development Environment References section.

• Updated FPGA resources numbers in Available
Resources in the PR Region section.

• Updated information in:
— Acronym List for Accelerator Functional

Unit Developer's Guide
— AFU Project Structure
— AFU Design Structure
— Partial Reconfiguration Design Guidelines

• Added following new topics in AFU Design
Guidelines section:
— General Guidelines
— Utilizing Clock Resources
— Interfacing with the FIU
— Accessing Local DDR4 SDRAM

• Added links to the related documentation.

2017.12.22 1.0 Beta (supported with Intel Quartus Prime Pro
Edition 17.0.0)

First release of comprehensive developer's guide
to replace the Accelerator Functional Unit (AFU)
Information Brief.

2017.10.02 1.0 Alpha (supported with Intel Quartus Prime Pro
Edition 17.0)

Initial Release named "Accelerator Functional Unit
(AFU) Information Brief".

UG-20114 | 2018.04.11

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus
and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other
countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2008
Registered

http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

	Accelerator Functional Unit (AFU) Developer’s Guide
	Contents
	1. About this Document
	1.1. Intended Audience
	1.2. Conventions
	1.3. Related Documentation
	1.4. Acronym List for Accelerator Functional Unit Developer’s Guide
	1.5. Acceleration Glossary

	2. Introduction
	2.1. Getting Started with the Acceleration Stack
	2.1.1. Development Environment References
	2.1.2. FPGA Tools and IP Requirements

	2.2. Base Knowledge and Skills Prerequisites

	3. Getting Started with AFU Development
	4. Custom AFU Development
	4.1. AFU Integration within the Acceleration Stack
	4.1.1. The FPGA Interface Manager (FIM)
	4.1.2. The AFU PR Regions

	4.2. Intel Quartus Prime Pro Edition Flow
	4.3. Designing and Compiling AFUs
	4.3.1. Available Resources in the PR Region
	4.3.2. AFU Project Structure
	4.3.3. AFU Design Structure
	4.3.4. Utilizing Intel FPGA Basic Building Blocks (BBBs)
	4.3.5. Partial Reconfiguration Design Guidelines
	4.3.6. AFU Design Guidelines
	4.3.6.1. General Guidelines
	4.3.6.2. Utilizing Clock Resources
	4.3.6.3. Interfacing with the FPGA Interface Unit (FIU)
	4.3.6.4. Accessing Local DDR4 SDRAM

	4.3.7. Using the Scripts to Generate AFs
	4.3.7.1. run.sh
	4.3.7.2. clean.sh

	4.4. Using the Packager to Update Metadata

	5. AFU Functional Verification
	6. AFU In-System Debug
	6.1. Remote Signal Tap Setup and Use
	6.1.1. Instrumenting the AFU Design for Signal Tap
	6.1.2. Enable Remote Debug and Signal Tap
	6.1.3. Generate the Remote Debug Enabled AF
	6.1.4. Prepare the Remote Debug Host
	6.1.5. Running a Remote Debug Session
	6.1.5.1. Connect to the AFU Target
	6.1.5.2. Using Signal Tap with a Remote Target Connection
	6.1.5.3. Stimulating the Target AFU for In-System Debug
	6.1.5.3.1. Accessing the AFU in Shared Mode

	6.1.5.4. Disconnect from the AFU Target

	6.1.6. Remote Debug Guidelines
	6.1.7. Troubleshooting Remote Debug Connections

	7. Document Revision History for Accelerator Functional Unit (AFU) Developer’s Guide

