申し訳ありませんが、この PDF はダウンロード形式でのみご提供しています。

Evaluation/Transport Physics: Schottky-Gate III-V Compound Semiconductor QWFE Transistors

In this paper for the first time, the logic performance of Schottky-gate In0.7Ga0.3As QWFETs is measured and evaluated against that of advanced Strained Si MOSFETs from Vcc = 0.5 to 1.0V. The QWFET is shown to have measured drive current gain over the Si MOSFET for the entire Vcc range. Effective velocity (Veff) of the QWFET exhibits 4.6X-3.3X gain over the Si MOSFET. The high Veff enables 65% intrinsic drive current gain at VCC = 0.5V and 20% gain at VCC = 1.0V for the In0.7Ga0.3As QWFET over that of Strained Si, despite 2.5x lower charge density.

Introduction

III-V compound semiconductor based quantum well field effect transistor (QWFET) has been proposed as a promising device candidate for future high speed and low power logic applications due to its high electron mobility [1-2]. At low operating voltage (Vcc) of 0.5V, the Schottky-gate In0.7Ga0.3As QWFET has shown significant performance gain over strained silicon MOSFET [1-3]. There are at least two reasons why these devices should be evaluated at higher Vcc: (i) possible application to earlier logic technology nodes which use Vcc > 0.5V and (ii) flexibility for circuit applications that require multiple Vcc’s at a given technology node. For the first time, the logic performance of Schottky-gate In0.7Ga0.3As QWFETs is measured on the same test bench and evaluated against that of advanced Strained Si MOSFETs [4-5] over a wide range of Vcc from 0.5-1.0V. For logic applications it is essential to compare the performance of these devices at the same transistor off-state leakage (Ioff). At constant Ioff, it is shown that the In0.7Ga0.3As QWFET has significant drive current gain over strained Si for the entire Vcc range. Also, effective carrier velocity (Veff) measurements and temperature dependent studies are used to understand the device performance for Vcc from 0.5-1.0V.

Read the full Evaluation/Transport Physics Schottky-Gate III-V Compound Semiconductor QWFE Transistors Paper.

Evaluation/Transport Physics: Schottky-Gate III-V Compound Semiconductor QWFE Transistors

In this paper for the first time, the logic performance of Schottky-gate In0.7Ga0.3As QWFETs is measured and evaluated against that of advanced Strained Si MOSFETs from Vcc = 0.5 to 1.0V. The QWFET is shown to have measured drive current gain over the Si MOSFET for the entire Vcc range. Effective velocity (Veff) of the QWFET exhibits 4.6X-3.3X gain over the Si MOSFET. The high Veff enables 65% intrinsic drive current gain at VCC = 0.5V and 20% gain at VCC = 1.0V for the In0.7Ga0.3As QWFET over that of Strained Si, despite 2.5x lower charge density.

Introduction

III-V compound semiconductor based quantum well field effect transistor (QWFET) has been proposed as a promising device candidate for future high speed and low power logic applications due to its high electron mobility [1-2]. At low operating voltage (Vcc) of 0.5V, the Schottky-gate In0.7Ga0.3As QWFET has shown significant performance gain over strained silicon MOSFET [1-3]. There are at least two reasons why these devices should be evaluated at higher Vcc: (i) possible application to earlier logic technology nodes which use Vcc > 0.5V and (ii) flexibility for circuit applications that require multiple Vcc’s at a given technology node. For the first time, the logic performance of Schottky-gate In0.7Ga0.3As QWFETs is measured on the same test bench and evaluated against that of advanced Strained Si MOSFETs [4-5] over a wide range of Vcc from 0.5-1.0V. For logic applications it is essential to compare the performance of these devices at the same transistor off-state leakage (Ioff). At constant Ioff, it is shown that the In0.7Ga0.3As QWFET has significant drive current gain over strained Si for the entire Vcc range. Also, effective carrier velocity (Veff) measurements and temperature dependent studies are used to understand the device performance for Vcc from 0.5-1.0V.

Read the full Evaluation/Transport Physics Schottky-Gate III-V Compound Semiconductor QWFE Transistors Paper.

関連ビデオ