
Performance
Optimization

Intelligent Systems Group

Intel Corporation

Legal Disclaimer

• INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE,
TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH
PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF
INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF
ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED NOR INTENDED FOR ANY APPLICATION IN WHICH THE
FAILURE OF THE INTEL PRODUCT COULD CREATE A SITUATION WHERE PERSONAL INJURY OR DEATH MAY OCCUR.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of
any features or instructions marked "reserved" or "undefined". Intel reserves these for future definition and shall have no responsibility whatsoever for
conflicts or incompatibilities arising from future changes to them. The information here is subject to change without notice. Do not finalize a design with this
information.

The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from published
specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling 1-800-548-4725,
or go to: http://www.intel.com/design/literature.htm

• All products, computer systems, dates and figures specified are preliminary based on current expectations, and are subject to change without notice.

• Intel product plans in this presentation do not constitute Intel plan of record product roadmaps. Please contact your Intel representative to obtain Intel's
current plan of record product roadmaps.

• Intel® vPro™ Technology is sophisticated and requires setup and activation. Availabiity of features and results will depend upon the setup and configuration of
your hardware, software and IT environment. To learn more visit: http://www.intel.com/technology/vpro.

• Requires activation and a system with a corporate network connection, an Intel® AMT-enabled chipset, network hardware and software. For notebooks, Intel
AMT may be unavailable or limited over a host OS-based VPN, when connecting wirelessly, on battery power, sleeping, hibernating or powered off. Results
dependent upon hardware, setup and configuration. For more information, visit http://www.intel.com/technology/platform-technology/intel-amt.

• No computer system can provide absolute security under all conditions. Intel® Trusted Execution Technology (Intel® TXT) requires a computer with Intel®
Virtualization Technology, an Intel TXT-enabled processor, chipset, BIOS, Authenticated Code Modules and an Intel TXT-compatible measured launched
environment (MLE). Intel TXT also requires the system to contain a TPM v1.s. For more information, visit http://www.intel.com/technology/security

• Intel Virtualization Technology requires a computer system with an enabled Intel® processor, BIOS, and virtual machine monitor (VMM). Functionality,
performance or other benefits will vary depending on hardware and software configurations. Software applications may not be compatible with all operating
systems. Consult your PC manufacturer. For more information, visit http://www.intel.com/go/virtualization

• Copyright © 2012 Intel Corporation. All rights reserved.

• Intel, the Intel logo and Inter Atom are trademarks of Intel Corporation in the United States and/or other countries.

• *Other names and brands may be claimed as the property of others.

http://www.intel.com/design/literature.htm
http://www.intel.com/technology/vpro
http://www.intel.com/technology/platform-technology/intel-amt
http://www.intel.com/technology/platform-technology/intel-amt
http://www.intel.com/technology/platform-technology/intel-amt
http://www.intel.com/technology/platform-technology/intel-amt
http://www.intel.com/technology/platform-technology/intel-amt
http://www.intel.com/technology/security
http://www.intel.com/go/virtualization

Motivation and Introduction

Effective Optimization Depends on the Right Process and Tools

• Embedded developers targeting an Intel® Atom™ processors require
knowledge of a performance optimization process employing the right
tools and analysis techniques.

• This optimization process must integrate tuning steps for single core
performance, multi-core performance, and power performance.

• The quality of tools support has a direct impact on the effectiveness of
the optimization efforts.

• Performance tools that target single processor core performance
provide insight into the application and how the application is behaving
at the level of the microarchitecture.

• Multi-core performance tools provide insight into how the application is
executing in the context of Intel® Hyper-Threading Technology (Intel®
HT Technology) and multi-core processing.

Break Away with Intel® Atom™ Processors: Chapter 8

Development and Optimization Process

• A typical development cycle consists of four phases: design, implementation, debugging, and tuning.

• The development cycle concludes when performance and stability requirements are met.

• The tuning phase consists of these steps in this order: Single core optimization, multi-core optimization,
power optimization.

• The first step is to analyze the system and software, and record benchmark results of the starting

point. Analyze again at each tuning step.

• Stop when the required performance is achieved.

Tuning is an Iterative Process

Break Away with Intel® Atom™ Processors: Chapter 8

Single Core Tuning Steps

Characterized as: Gain an understanding of the application,

tune upon general performance analysis, tune specific to the

Intel® Atom™ processor architecture.

Steps:
1. Benchmark - Develop a benchmark that represents typical application usage.

2. Profile - Analyze and understand the architecture of the application.

3. Compiler optimization - Use aggressive optimizations if possible.

4. General microarchitecture tuning - Tune based upon insight from general

performance analysis statistics. These statistics, such as clock cycles per

instruction retired, are generally accepted performance analysis statistics that

can be employed regardless of the underlying architecture.

5. Intel Atom processor tuning -Tune based on insight about known processor

“glass jaws.” These include statistics and techniques to isolate performance

issues specific to the Intel Atom processor.

Break Away with Intel® Atom™ Processors: Chapter 8

Boundaries of Optimization

• Pareto Principle:

– States that 80 percent of the time spent in an application is in 20

percent of the code, the “80/20 rule.”

– Prioritize optimization efforts to the areas of highest impact, the

most frequently executed portions of the code.

• Amdahl’s Law:

– Provides guidance on the limits of optimization.

– If the optimization can only be applied to 75 percent of the

application, the maximum theoretical speedup is 4 times.

Break Away with Intel® Atom™ Processors: Chapter 8

Amdahl’s Law

Maximum theoretical speedup is defined by Amdahl’s Law:

Actual Speedup n n = #threads, p = fraction parallel

Speedup < #Threads : sublinear speedup

Speedup = #Threads : linear speedup

Speedup > #Threads : superlinear speedup ***

n

p
pp nS



1

1max)(

Copyright © 2005, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners

8

Benefits of Multi-Core

Thread programs for performance

• Execute independent tasks in parallel

Serial applications can still benefit

• Multiple applications can run simultaneously

How can this improve performance?

Improve Turnaround

Process a single task in the

shortest time

Strategy:

Divide and Conquer

Improve Throughput

Process many tasks in a

fixed amount of time

Strategy:

Parallelism for Performance

Copyright © 2005, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners

9

Taking Advantage of Multi Core

Optimal performance benefits products that are prepared for
multi-core technologies

Dramatic improvements moving to multi-core hardware

• SMP-enabled operating system and threaded applications

• Consists of multiple applications, well-suited to multitasking

Others may have to apply some elbow grease

• Perhaps the applications haven’t been threaded

• Or perhaps the operating system isn’t SMP-enabled

Understand your multi-core migration readiness

Copyright © 2005, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners

10

Multi-core Readiness Evaluation

Core A Core B

Operating

System
Operating System

Device

Drivers

Device Drivers

Apps/

Libraries

Applications/Libraries

Devel

Tools
Development Tools

Survey your software stack to assess readiness

Component Description

Development
Tools

Ensure tool support is provided on your
OS of choice: threading correctness,
optimal app threading, threaded
libraries and device drivers

Application
or Libraries

Applications are thread safe and
provide threaded performance

Libraries are re-entrant and threaded
for performance, may need upgrade to
new OS

Device
Drivers

Device Drives may need to re-
architecture for optimal performance
and upgrade to new OS

Operating
System

Take measure of the OS roadmap;
ensure that your OS of choice has plans
to support necessary silicon features to
take advantage of Multiple Cores,
support of Multi Tasking and Multi-
Threading

Copyright © 2005, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners

11

Functional Decomposition

Divide computation based on natural set of independent
functions/tasks

• Different tasks operate on the same data

• Assign data for each task as needed

Example:

ATM teller activities distributed among multiple tasks:

• Process encrypted communications for throughput

• Service User Interface (UI) for high interactivity

• Manage equipment interrupts for low latency

Copyright © 2005, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners

12

Data Decomposition

Divide large data sets whose elements can be computed independently

• Same task operates on different data (opposite of Functional
decomposition)

• Distribute data and associated computation among threads

Example:

Photo kiosk with image processing

• Image pixels are divided up and processed by separate threads

• Sometimes “stitch-up” is required to compute the overlapping
borders of divided areas

Copyright © 2005, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners

Multi-core Processor Tuning

Focus is on the effective use of parallelism that takes advantage of more
than one processor core.

 This step pertains to both Intel® Hyper-Threading technology (Intel®
HT technology) and true multi-core processing.

Multitasking is the execution of multiple operating system processes on
a system.

Multithreading is the execution of multiple threads and by default
assumes memory is shared.

Copyright © 2005, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners

14

All routines called concurrently from multiple threads must be
thread safe

Two methods are available to ensure thread safety

• Routines can be written to be reentrant

• Routines can use mutual exclusion synchronization to avoid
conflicts with other threads

It is better to make a routine reentrant than to add synchronization
by avoiding potential overhead

Thread Safe Libraries

Copyright © 2005, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners

15

Concurrency vs. Parallelism

Multiple processors needed for parallelism

Thread 1

Thread 2

Thread 1

Thread 2

Concurrency: two or more threads are in progress at the same time

Emulation of Parallelism by Software threads

Parallelism: two or more threads are executing at the same time

True Parallelism

Copyright © 2005, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners

16

Threading = Parallelization

serial code/application

parallel

2 thread parallel

4 thread parallel

8 thread parallel

time

Copyright © 2005, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners

17

Amdahl’s Law for Parallelism

Describes the upper bound of parallel
speedup (scaling)

(1
-P

)
P

T
 se

ri
a
l

(1
-

P
)

P/2

0.5 + 0.25

1.0/0.75 = 1.33

2 ∞

P/∞

…

0.5 + 0.0

1.0/0.5 = 2.0

n = 1

(1
-P

)
Tparallel

Speedup

P parallel part

n number of threads

Serial code limits scaling

Copyright © 2005, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners

18

Computing Speedup

Number of
painters

Time Speedup

1 360 = 30 + 300 + 30 1.0X

2 210 = 30 + 150 + 30 1.7X

4 135 = 30 + 75 + 30 2.7X

8 98 = 30 + 38 + 30 3.7X

16 78 = 30 + 18 + 30 4.6X

Infinite 60 = 30 + 0 + 30 6.0X

Illustrates

Amdahl’s Law

Potential speedup

is restricted by

serial portion

Example: Painting a picket fence – 300 pickets

• 30 min of preparation (serial)

• 30 min of cleanup (serial)

• 1 min to paint a single picket

Copyright © 2005, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners

19

Efficiency

Measure of how effectively computation resources (threads) are kept busy

 Efficiency = Speedup / Number_of_Threads

• Expressed as average percentage of non-idle time

Number of
painters

Time Speedup Efficiency

1 360 = 30 + 300 + 30 1.0X 100%

2 210 = 30 + 150 + 30 1.7X 85%

4 135 = 30 + 75 + 30 2.7X 68%

8 98 = 30 + 38 + 30 3.7X 46%

Infinite 60 = 30 + 0 + 30 6.0X very low

Efficiency, like other measurements, ties to the amount of serial code

Tuning Multithreaded Applications

• Requires ensuring good performance when the application is executing on

both, logical and physical processor cores.

• Intel® Hyper-Threading technology (Intel® HT technology) is on the shared

resources of the processor core. For example, the caches are effectively

shared between two concurrently executing threads.

– It is possible for one thread to cause the other to miss in the cache
on every access.

• Thread interactions and cache behavior on multi-core processors can be
even more complicated.

• It is possible for two threads to cause false sharing,

Break Away with Intel® Atom™ Processors: Chapter 8

Synchronization

• OS APIs (mutex, semaphores) are effective but may be costly

– Choose the optimal OS calls based on the circumstance

– Ex. spin-wait, spin-locks, critical-sections

• Evaluate the need for synchronization; only use when necessary

– Intel® Thread Checker (Intel@ Inspector XE) can help determine
if synchronization is needed

– Intel® Thread Profiler (Thread analysis capability now included

with Intel® VTune™ Amplifier XE) is helpful in deciding which
method to use

• Ex. Use to profile the execution timeline for each thread

– Intel® VTune™ Performance Analyzer (Intel VTune Amplifier XE)

to measure system performance and effectiveness of a given
software technique

• Ex. Use to track cache hit rate

Break Away with Intel® Atom™ Processors: Chapter 8

Optimizing Synchronization

• Manage lock contention for large and small critical sections.
– Critical sections execute serially. Threads should spend as little time inside a

critical section as possible to reduce the amount of time other threads sit idle
waiting to acquire the lock, a state known as lock contention.

– In other words, it is best to keep critical sections small. Use synchronization
routines provided by the threading API rather than hand-coding synchronization.

• Choose appropriate synchronization primitives to minimize overhead.
– Understand the available synchronization objects and their tradeoffs.
– Examples include simple operations on variable, inter-process synchronization

and timed waits, and controlled spin counts for critical sections. Spin counts can
greatly affect SMP performance on processors employing Intel® Hyper-
Threading technology (Intel® HT technology).

• Use non-blocking locks when possible.
– Use non-blocking threading calls to avoid context-switch overheads. The non-

blocking synchronization calls usually start with the try keyword in C++.

Break Away with Intel® Atom™ Processors: Chapter 8

Alternatives to Synchronization

• OS can use light-weight objects such as MONITOR/MWAIT
to reduce power consumption

• Reduce power and increase performance by using PAUSE or
HLT instructions in fast spin loops (reduce missed branch
prediction):

• If you do implement a semaphore or MUTEX, place each
synchronization variable in a separate cache line to avoid
false sharing

do{

 _asm PAUSE

} while (sync_var != constant_value);

Break Away with Intel® Atom™ Processors: Chapter 8

Cache Coherency and False Sharing

• False sharing occurs when two
or more threads from different
processors access different
address ranges on the same
cache line

• Shared L2 cache architecture
eliminates false sharing at the
L2 cache level

• However:
– False sharing caused by private

L1 caches still exists, although
with less penalty (compared to
private L2 cache)

– False sharing exists between
cores that are on different
processors that are not sharing
the L2 cache

Break Away with Intel® Atom™ Processors: Chapter 8

Optimizing Performance with Shared Cache
(cont.)

• Avoid cache thrashing:
– Use a performance analyzer (Intel® VTune) to identify excessive

cache misses.

• Perform all processing on that data while it’s in cache
instead of having to read it into cache several times for
different steps of the processing to the same data.

• Pin threads that share data to cores that share cache. This
technique benefits from data locality. Thus, it reduces cache
misses.
– Use OS processor affinity functions

• Assign non-shared data to different cache lines.
– Use structured types to group variables together to save space

Break Away with Intel® Atom™ Processors: Chapter 8

Optimizing Performance with Shared Cache

• Use private thread copy

– OpenMP* threadprivate modifier

– MS compiler: __declspec(thread)

• Use thread optimized memory allocation routines that

allocate data from a separate 64-byte aligned pool for each

thread

– The malloc function in the Intel compiler provides this feature

• In managed environments that provide automatic object

allocation, the object allocators and garbage collectors

should be responsible for the avoidance of false sharing

Break Away with Intel® Atom™ Processors: Chapter 8

*Other names and brands may be claimed as the property of others.

Optimizing Performance with Shared Cache
(cont.)

• Align data to cache line size
– Organize all global and static data variables that are accessed by

one thread in blocks that are cache line size aligned

Example in Microsoft* Visual C++:

 #define CAHE_LINE 64

 __declspec(align(CACHE_LINE)) unsigned _int64

sum;

Group the data structure together to save space:

 __declspec(align(16) struct { int i, j; float k;}

sub;

Break Away with Intel® Atom™ Processors: Chapter 8

*Other names and brands may be claimed as the property of others.

Performance Optimization Tips

Compiler Performance Features

Use an Intel® Atom™ processor targeting option (-xSSE3_ATOM)

Use automatic vectorization (-vec)

Use the -O3 option for aggressive loop and memory optimization

Use interprocedural optimization (IPO)

Use profile guided optimization (PGO)

Multicore

Use multi-core software development tools

Use multi-core enabled performance libraries

Multithread for parallelism

Pin threads that share data on cores that share

cache

Example:

-O3 -ipo -no-prec-div -xSSE3_Atom -prof_gen -prof_use

Break Away with Intel® Atom™ Processors: Chapter 8

Tools

Intel® Software Development Products

Analysis tools

Threading Tools and Libraries

Debuggers

28
Break Away with Intel® Atom™ Processors: Chapter 8

Questions?

