Intel® 5100 Memory Controller Hub Chipset for Communications, Embedded, and Storage Applications

Thermal/Mechanical Design Guide

July 2008
Revision 003US
Contents

1.0 Introduction ... 6
 1.1 Design Flow .. 6
 1.2 Definition of Terms ... 7
 1.3 Related Documents ... 8
 1.4 Thermal Simulation ... 9
2.0 Packaging Technology ... 9
 2.1 Package Mechanical Requirements ... 11
3.0 Thermal Specifications ... 12
 3.1 Thermal Design Power (TDP) ... 12
 3.2 Case Temperature .. 12
4.0 Thermal Solution Requirements ... 12
 4.1 Characterizing the Thermal Solution Requirement ... 12
5.0 Thermal Metrology ... 15
 5.1 MCH Case Measurement ... 15
 5.1.1 Supporting Test Equipment ... 15
 5.1.2 Thermal Calibration and Controls ... 16
 5.1.3 IHS Groove ... 16
 5.1.4 Thermocouple Conditioning and Preparation .. 18
 5.1.5 Thermocouple Attachment to IHS ... 18
 5.1.6 Curing Process .. 22
 5.1.7 Thermocouple Wire Management ... 23
 5.2 Power Simulation Software ... 24
6.0 Reference Thermal Solution .. 24
 6.1 AdvancedTCA* Reference Heatsink .. 25
 6.1.1 Thermal Performance ... 25
 6.1.2 Mechanical Design Envelope ... 25
 6.1.3 Board-level Components Keepout Dimensions ... 26
 6.1.4 Torsional Clip Heatsink Thermal Solution Assembly 26
 6.1.5 Heatsink Orientation ... 27
 6.1.6 Extruded Heatsink Profiles .. 27
 6.1.7 Mechanical Interface Material ... 27
 6.1.8 Thermal Interface Material .. 27
 6.1.8.1 Effect of Pressure on TIM Performance ... 28
 6.1.9 Heatsink Clip ... 28
 6.1.10 Clip Retention Anchors ... 28
 6.1.11 Reliability Guidelines ... 28
 6.2 CompactPCI* Reference Heatsink .. 29
 6.2.1 Component Overview ... 29
 6.2.2 Thermal Solution Performance Characteristics ... 30
7.0 Reliability Guidelines ... 30
A Mechanical Drawings .. 31
B Thermal Solution Component Suppliers ... 40
Figures

1. Thermal Design Process .. 7
2. MCH Package Dimensions (Top View) 10
3. MCH Package Dimensions (Side View) 10
4. MCH Package Dimensions (Bottom View) 11
6. IHS Groove Dimensions .. 17
7. Orientation of Thermocouple Groove Relative to Package Pin 18
8. Bending Tip of Thermocouple .. 18
9. Securing Thermocouple Wires with Kapton Tape Prior to Attach 19
10. Thermocouple Bead Placement ... 20
11. Positioning Bead on Groove ... 20
12. Using 3D Micromanipulator to Secure Bead Location 21
13. Measuring Resistance between Thermocouple and IHS 21
14. Applying Adhesive on Thermocouple Bead 22
15. Thermocouple Wire Management in Groove 23
16. Removing Excess Adhesive from IHS 23
17. Filling Groove with Adhesive .. 24
18. Torsional Clip Heatsink Measured Thermal Performance versus Approach Velocity 25
19. AdvancedTCA* Torsional Clip Heatsink Volumetric Envelope for MCH Heatsink 26
20. Torsional Clip Heatsink Assembly ... 27
21. Isometric View of the CompactPCI* Reference Heatsink 29
22. CompactPCI* Reference Heatsink Thermal Performance 30
23. AdvancedTCA* Heatsink Assembly Drawing 32
24. AdvancedTCA* Heatsink Drawing ... 33
25. AdvancedTCA* Component Keepout Zone 34
26. CompactPCI* Heatsink Assembly Drawing 35
27. CompactPCI* Heatsink Drawing .. 36
28. CompactPCI* Component Keepout Zone 37
29. Torsional Clip Heatsink Clip Drawing 38
30. TIM2 Drawing ... 39

Tables

1. Definition of Terms ... 7
2. Related Documents ... 8
3. Intel® 5100 Memory Controller Hub Chipset Thermal Specifications 12
4. Required Thermocouple Thermal Performance (ΨtCA) 15
5. Thermocouple Attach Support Equipment 16
6. Honeywell* PCM45F TIM Performance as Function of Attach Pressure 28
7. Reliability Guidelines ... 29
8. Reliability Requirements .. 30
9. Mechanical Drawing List .. 31
10. MCH Torsional Clip Heatsink Thermal Solution 40
Revision History

<table>
<thead>
<tr>
<th>Date</th>
<th>Revision</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>July 2008</td>
<td>003</td>
<td>Added the CompactPCI* reference solution</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Added Figure 26, Figure 27, and Figure 28</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Updated the supplier information</td>
</tr>
<tr>
<td>February 2008</td>
<td>002</td>
<td>Updated the TDP<sub>Max config</sub> value to 25.7 W in Table 3</td>
</tr>
<tr>
<td>November 2007</td>
<td>001</td>
<td>Initial release</td>
</tr>
</tbody>
</table>

Revision Number Descriptions

<table>
<thead>
<tr>
<th>Revision</th>
<th>Associated Life Cycle Milestone</th>
<th>Release Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>POP L3 Closure</td>
<td>Initial Documentation - Typically Internal Only</td>
</tr>
<tr>
<td>0.1–0.4</td>
<td>When Needed</td>
<td>Project Dependent - Typically Internal Only</td>
</tr>
<tr>
<td>0.5</td>
<td>Design Win Phase</td>
<td>First, Required Customer Release</td>
</tr>
<tr>
<td>0.6–0.7</td>
<td>When Needed</td>
<td>Project Dependent</td>
</tr>
<tr>
<td>0.7</td>
<td>Simulations Complete</td>
<td>Second, Recommended Customer Release</td>
</tr>
<tr>
<td>0.8–0.9</td>
<td>When Needed</td>
<td>Project Dependent</td>
</tr>
<tr>
<td>1.0</td>
<td>First Silicon Samples</td>
<td>Required Customer Release</td>
</tr>
<tr>
<td>1.1–1.4</td>
<td>When Needed</td>
<td>Project Dependent (Recommended)</td>
</tr>
<tr>
<td>1.5</td>
<td>Qualification Silicon Samples</td>
<td>Project Dependent</td>
</tr>
<tr>
<td>1.6–1.9</td>
<td>When Needed</td>
<td>Project Dependent</td>
</tr>
<tr>
<td>NDA - 2.0</td>
<td>First SKU Launch</td>
<td>Required Customer Release - Product Launch</td>
</tr>
<tr>
<td>Public - XXXXXX-001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1 and up</td>
<td>When Needed</td>
<td>Project Dependent</td>
</tr>
</tbody>
</table>

Note: Rows highlighted in gray are required revisions.
1.0 Introduction

As the complexity of computer systems increases, so do the power dissipation requirements. Care must be taken to ensure that the additional power is properly dissipated. Typical methods to improve heat dissipation include selective use of ducting, and/or passive heatsinks.

The goals of this document are to:

- Outline the thermal and mechanical operating limits and specifications for the Intel® 5100 Memory Controller Hub Chipset (Intel® 5100 MCH Chipset)
- Describe reference thermal solutions that meet the specification of the Intel® 5100 MCH Chipset

Properly designed thermal solutions provide adequate cooling to maintain the Intel® 5100 MCH Chipset die temperatures at or below thermal specifications. This is accomplished by providing a low local-ambient temperature, ensuring adequate local airflow, and minimizing the die to local-ambient thermal resistance. By maintaining the Intel® 5100 MCH Chipset die temperature at or below the specified limits, a system designer can ensure the proper functionality, performance, and reliability of the chipset. Operation outside the functional limits can degrade system performance and may cause permanent changes in the operating characteristics of the component.

The simplest and most cost effective method to improve the inherent system cooling characteristics is through careful chassis design and placement of fans, vents, and ducts. When additional cooling is required, component thermal solutions may be implemented in conjunction with system thermal solutions. The size of the fan or heatsink can be varied to balance size and space constraints with acoustic noise.

This document addresses thermal design and specifications for the Intel® 5100 MCH Chipset components only. For thermal design information on other chipset components, refer to the respective component datasheet. For the ICH9R, refer to the Intel® I/O Controller Hub 9 (ICH9) Family Thermal and Mechanical Design Guidelines.

Note: Unless otherwise specified, the term “MCH” refers to the Intel® 5100 MCH Chipset.

1.1 Design Flow

To develop a reliable, cost-effective thermal solution, several tools have been provided to the system designer. Figure 1 illustrates the design process implicit to this document and the tools appropriate for each step.
1.2 Definition of Terms

Table 1. Definition of Terms

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>FC-BGA</td>
<td>Flip Chip Ball Grid Array. A package type defined by a plastic substrate where a die is mounted using an underfill C4 (Controlled Collapse Chip Connection) attach style. The primary electrical interface is an array of solder balls attached to the substrate opposite the die. Note: The device arrives at the customer with solder balls attached.</td>
</tr>
<tr>
<td>BLT</td>
<td>Bond line thickness. Final settled thickness of the thermal interface material after installation of heatsink.</td>
</tr>
<tr>
<td>ICH9</td>
<td>I/O Controller Hub 9</td>
</tr>
<tr>
<td>IHS</td>
<td>Integrated Heat Spreader</td>
</tr>
<tr>
<td>MCH</td>
<td>Memory controller hub. The chipset component that contains the processor interface, the memory interface, the PCI Express* interface and the ESI interface.</td>
</tr>
<tr>
<td>T_{case_max}</td>
<td>Maximum allowed component temperature. This temperature is measured at the geometric center of the top of the package IHS.</td>
</tr>
<tr>
<td>T_{case_min}</td>
<td>Minimum allowed component temperature. This temperature is measured at the geometric center of the top of the package IHS.</td>
</tr>
<tr>
<td>TDP</td>
<td>Thermal design power. Thermal solutions should be designed to dissipate this target power level. TDP is not the maximum power that the chipset can dissipate.</td>
</tr>
<tr>
<td>TIM</td>
<td>Thermal Interface Material</td>
</tr>
<tr>
<td>α_{CA}</td>
<td>Case-to-ambient thermal characterization parameter. A measure of the thermal solution thermal performance including TIM using the thermal design power. Defined as $(T_{CASE} - T_{LA}) / TDP$</td>
</tr>
<tr>
<td>α_{CS}</td>
<td>Case-to-sink thermal characterization parameter. A measure of the TIM thermal performance using the thermal design power. Defined as $(T_{CASE} - T_{LA}) / TDP$</td>
</tr>
<tr>
<td>α_{SA}</td>
<td>Sink-to-ambient thermal characterization parameter. A measure of heatsink thermal performance using the thermal design power. Defined as $(T_{CASE} - T_{LA}) / TDP$</td>
</tr>
</tbody>
</table>
1.3 Related Documents

Intel® Electronic Design Kits (EDKs) provide online, real-time collateral updates. The following links take you to the EDK server and require you to log into Intel® Business Link (IBL).

- Quad-Core and Dual-Core Intel® Xeon® Processor 5000 Sequence with Intel® 5100 Memory Controller Hub Chipset for Communications, Embedded, and Storage Applications
- Intel® Core™2 Duo Processors T9400 and SL9400 and Intel® 5100 Memory Controller Hub Chipset for Communications and Embedded Applications

The reader of this specification should also be familiar with material and concepts presented in the documents listed in Table 2.

Table 2. Related Documents (Sheet 1 of 2)

<table>
<thead>
<tr>
<th>Document</th>
<th>Document Number/URL</th>
</tr>
</thead>
<tbody>
<tr>
<td>BGA/OLGA Assembly Development Guide</td>
<td>Note 1</td>
</tr>
<tr>
<td>Intel® Xeon® Processor 5100 Series Datasheet</td>
<td>http://www.intel.com/ (313355)</td>
</tr>
<tr>
<td>Intel® Xeon® Processor 5100 Series Thermal/Mechanical Design Guidelines</td>
<td>http://www.intel.com/ (313357)</td>
</tr>
<tr>
<td>Intel® Xeon® Processor 5200 Series Datasheet</td>
<td>http://www.intel.com/ (318590)</td>
</tr>
<tr>
<td>Intel® Xeon® Processor 5200 Series Thermal/Mechanical Design Guidelines</td>
<td>http://www.intel.com/ (318675)</td>
</tr>
<tr>
<td>Intel® Xeon® Processor LV 5138 in Embedded Applications Thermal/Mechanical Design Guidelines</td>
<td>http://www.intel.com/ (315225)</td>
</tr>
<tr>
<td>Intel® 5000 Series Chipset Memory Controller Hub (MCH) Thermal/Mechanical Design Guide</td>
<td>http://www.intel.com/ (313067)</td>
</tr>
<tr>
<td>Intel® 5100 Memory Controller Hub Chipset (embedded) – External Design Specification (EDS) Addendum</td>
<td>Note 1</td>
</tr>
<tr>
<td>Intel® 5100 Memory Controller Hub Chipset (embedded) – Maximum Power Application</td>
<td>Note 1</td>
</tr>
<tr>
<td>Intel® 5100 Memory Controller Hub Datasheet</td>
<td>http://www.intel.com/ (318378)</td>
</tr>
<tr>
<td>Intel® 5100 Memory Controller Hub Specification Update</td>
<td>http://www.intel.com/ (318385)</td>
</tr>
<tr>
<td>Intel® Core™2 Duo Processor, Intel® Core™2 Solo Processor and Intel® Core™2 Extreme Processor on 45-nm Process Datasheet</td>
<td>http://www.intel.com/ (320120)</td>
</tr>
<tr>
<td>Intel® Core™2 Duo Processor, Intel® Core™2 Solo Processor and Intel® Core™2 Extreme Processor on 45-nm Process Specification Update</td>
<td>http://www.intel.com/ (320121)</td>
</tr>
<tr>
<td>Intel® Core™2 Duo Processors on 45-nm process for Embedded Applications Thermal Design Guide</td>
<td>http://www.intel.com/ (320028)</td>
</tr>
<tr>
<td>Intel® Core™2 Duo Processors T9400 and SL9400 and Intel® 5100 Memory Controller Hub Chipset for Communications and Embedded Applications – Platform Design Guide</td>
<td>Note 1</td>
</tr>
<tr>
<td>Intel® I/O Controller Hub 9 (ICH9) Family Datasheet</td>
<td>http://www.intel.com/ (316972)</td>
</tr>
</tbody>
</table>

Notes:
1. Contact your Intel sales representative. Some documents may not be available at this time.
1.4 Thermal Simulation

Intel provides thermal simulation models of the Intel® 5100 MCH Chipset and associated user’s guides to aid system designers in simulating, analyzing, and optimizing their thermal solutions in an integrated, system-level environment. The models are for use with the commercially available Computational Fluid Dynamics (CFD)-based thermal analysis tools Flomerics® FLOHERM® (version 5.1 or higher) and Fluent® Icpak® (version 4.3.10 or higher). Contact your Intel field sales representative to order the thermal models and user’s guides.

2.0 Packaging Technology

Intel® 5100 MCH Chipset-based platforms consist of two individual components: the Intel® 5100 MCH Chipset and the ICH9R. The Intel® 5100 MCH Chipset uses a 42.5 mm, 10-layer flip chip ball grid array (FC-BGA) package (see Figure 2, Figure 3, and Figure 4). For information on the ICH9R package, refer to the Intel® I/O Controller Hub 9 (ICH9) Family Thermal and Mechanical Design Guidelines.

Table 2. Related Documents (Sheet 2 of 2)

<table>
<thead>
<tr>
<th>Document</th>
<th>Document Number/URL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intel® I/O Controller Hub 9 (ICH9) Family Thermal and Mechanical Design Guidelines</td>
<td>http://www.intel.com/ (316974)</td>
</tr>
<tr>
<td>Quad-Core and Dual-Core Intel® Xeon® Processor 5000 Sequence with Intel® 5100 Memory Controller Hub Chipset for Communications, Embedded, and Storage Applications – Platform Design Guide</td>
<td>Note 1</td>
</tr>
<tr>
<td>Quad-Core Intel® Xeon® Processor 5300 Series Datasheet</td>
<td>http://www.intel.com/ (315569)</td>
</tr>
<tr>
<td>Quad-Core Intel® Xeon® Processor 5300 Series Specification Update</td>
<td>http://www.intel.com/ (315338)</td>
</tr>
<tr>
<td>Quad-Core Intel® Xeon® Processor 5300 Series Thermal/ Mechanical Design Guidelines</td>
<td>http://www.intel.com/ (315794)</td>
</tr>
<tr>
<td>Quad-Core Intel® Xeon® Processor 5400 Series Datasheet</td>
<td>http://www.intel.com/ (318589)</td>
</tr>
<tr>
<td>Quad-Core Intel® Xeon® Processor 5400 Series Specification Update</td>
<td>http://www.intel.com/ (318585)</td>
</tr>
<tr>
<td>Quad-Core Intel® Xeon® Processor 5400 Series Thermal/ Mechanical Design Guidelines</td>
<td>http://www.intel.com/ (318611)</td>
</tr>
<tr>
<td>Quad-Core Intel® Xeon® Processor LS318 in Embedded Applications Thermal and Mechanical Design Guidelines</td>
<td>http://www.intel.com/ (318474)</td>
</tr>
<tr>
<td>Various system thermal design suggestions</td>
<td>http://www.formfactors.org</td>
</tr>
</tbody>
</table>

Notes:
1. Contact your Intel sales representative. Some documents may not be available at this time.
Figure 2. MCH Package Dimensions (Top View)

Figure 3. MCH Package Dimensions (Side View)

Notes:
1. Primary datum -C- and seating plan are defined by the spherical crowns of the solder balls (shown before motherboard attach).
2. All dimensions and tolerances conform to ANSI Y14.5M-1994
3. BGA has a pre-SMT height of 0.5mm and post-SMT height of 0.41-0.46mm
4. Shown before motherboard attach; FCBGA has a convex (dome shaped) orientation before reflow and is expected to have a slightly concave (bowl shaped) orientation after reflow.
2.1 Package Mechanical Requirements

The Intel® 5100 MCH Chipset package has an integrated heat spreader (IHS) that is capable of sustaining a maximum static normal load of 15 lbf. These mechanical load limits must not be exceeded during heatsink installation, mechanical stress testing, standard shipping conditions and/or any other use condition.

Note: The heatsink attach solutions must not include continuous stress to the chipset package with the exception of a uniform load to maintain the heatsink-to-package thermal interface.
These specifications apply to uniform compressive loading in a direction perpendicular to the IHS top surface.

Note: These specifications are based on limited testing for design characterization. Loading limits are for the package only.

3.0 Thermal Specifications

3.1 Thermal Design Power (TDP)

Analysis indicates that real applications are unlikely to cause the MCH component to consume maximum power dissipation for sustained time periods. Therefore, in order to arrive at a more realistic power level for thermal design purposes, Intel characterizes power consumption based on known platform benchmark applications. The resulting power consumption is referred to as the Thermal Design Power (TDP). TDP is the target power level to which the thermal solutions should be designed. TDP is not the maximum power that the chipset can dissipate.

FC-BGA packages have a poor heat transfer capability into the board and have a minimal thermal capability without a thermal solution. Intel recommends that system designers plan for a heatsink when using the Intel® 5100 MCH Chipset.

3.2 Case Temperature

To ensure proper operation and reliability of the Intel® 5100 MCH Chipset, the case temperatures must be at or between the maximum/minimum operating temperature ranges as specified in Table 3. System and/or component level thermal solutions are required to maintain these temperature specifications. Refer to Section 5.0, “Thermal Metrology” on page 15 for guidelines on accurately measuring package case temperatures.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T_{\text{case_max}}$</td>
<td>105 °C</td>
<td></td>
</tr>
<tr>
<td>$T_{\text{case_min}}$</td>
<td>5 °C</td>
<td></td>
</tr>
<tr>
<td>$T_{\text{DTP_MCH_config}}$</td>
<td>25.7 W</td>
<td>DP FSB 1333, 2 channel DDR2 667, 3 x8 PCI Express*</td>
</tr>
<tr>
<td>$T_{\text{DTP_Typ_ATCA_config}}$</td>
<td>23.0 W</td>
<td>DP FSB 1067, 2 channel DDR2 533, 3 x8 PCI Express*</td>
</tr>
<tr>
<td>$T_{\text{DTP_Typ_UP_config}}$</td>
<td>19.5 W</td>
<td>UP FSB 1067, 1 channel DDR2 533, 1 x8 PCI Express*</td>
</tr>
</tbody>
</table>

4.0 Thermal Solution Requirements

4.1 Characterizing the Thermal Solution Requirement

The idea of a “thermal characterization parameter” Ψ (the Greek letter Psi) is a convenient way to characterize the performance needed for the thermal solution and to compare thermal solutions in identical situations (in other words, heating source, local ambient conditions, and so forth). The thermal characterization parameter is calculated using total package power; whereas, actual thermal resistance, θ (theta), is calculated using actual power dissipated between two points. Measuring actual power dissipated into the heatsink is difficult, because some of the power is dissipated through a heat transfer into the package and board.
The case-to-local ambient thermal characterization parameter \(\Psi_{CA} \) is used as a measure of the thermal performance of the overall thermal solution. It is defined by Equation 1 and is measured in units of °C/W.

Equation 1. Case-to-local Ambient Thermal Characterization Parameter \((\Psi_{CA}) \)

\[
\Psi_{CA} = \frac{T_{CASE} - T_{LA}}{TDP}
\]

The case-to-local ambient thermal characterization parameter, \(\Psi_{CA} \), is comprised of \(\Psi_{CS} \), the thermal interface material (TIM) thermal characterization parameter, and of \(\Psi_{SA} \), the sink-to-local ambient thermal characterization parameter.

Equation 2. Case-to-local Ambient Thermal Characterization Parameter \((\Psi_{CA}) \)

\[
\Psi_{CA} = \Psi_{CS} + \Psi_{SA}
\]

\(\Psi_{CS} \) is strongly dependent on the thermal conductivity and thickness of the TIM between the heatsink and device package.

\(\Psi_{SA} \) is a measure of the thermal characterization parameter from the bottom of the heatsink to the local ambient air. \(\Psi_{SA} \) is dependent on the heatsink material, thermal conductivity, and geometry. It is also strongly dependent on the air velocity through the fins of the heatsink. Figure 5 illustrates the combination of the different thermal characterization parameters.

Figure 5. Processor Thermal Characterization Parameter Relationships

Example 1. Calculating the Required Thermal Performance

The cooling performance, \(\Psi_{CA} \), is defined using the thermal characterization parameter previously described. The process to determine the required thermal performance to cool the device includes the following.

1. Define a target component temperature \(T_{CASE} \) and corresponding TDP.
2. Define a target local ambient temperature, T_{LA}.

3. Use Equation 1 and Equation 2 to determine the required thermal performance needed to cool the device.

The following provides an example of how you might determine the appropriate performance targets.

Assume:
- TDP = 25.0 W and $T_{CASE} = 105^\circ$C
- Local processor ambient temperature, $T_{LA} = 60^\circ$C

Then the following could be calculated using Equation 1 for the given chipset configuration.

$$\Psi_{CA} = \frac{T_{CASE} - T_{LA}}{TDP} = \frac{105 - 60}{25} = 1.8^\circ$C/W$$

To determine the required heatsink performance, a heatsink solution provider would need to determine Ψ_{CS} performance for the selected TIM and mechanical load configuration. If the heatsink solution were designed to work with a TIM material performing at $\Psi_{CS} \leq 0.20^\circ$C/W, solving from Equation 2, the performance needed from the heatsink is as follows.

$$\Psi_{SA} = \Psi_{CA} - \Psi_{CS} = 1.8 - 0.20 = 1.6^\circ$C/W$$

If the local ambient temperature is relaxed to 45 $^\circ$C, the same calculation can be carried out to determine the new case-to-ambient thermal resistance.

$$\Psi_{CA} = \frac{T_{CASE} - T_{LA}}{TDP} = \frac{105 - 45}{25} = 2.4^\circ$C/W$$

It is evident from the above calculations that a reduction in the local ambient temperature has a significant effect on the case-to-ambient thermal resistance requirement. This effect can contribute to a more reasonable thermal solution including reduced cost, heatsink size, heatsink weight, and a lower system airflow rate.
Table 4 summarizes the thermal budget required to adequately cool the Intel® 5100 MCH Chipset in one configuration using a TDP of 25 W. Further calculations would need to be performed for different TDPs. Because the results are based on air data at sea level, a correction factor would be required to estimate the thermal performance at other altitudes.

Table 4. Required Heatsink Thermal Performance (Ψ_{CA})

<table>
<thead>
<tr>
<th>Device</th>
<th>Ψ_{CA} (°C/W) at $T_{LA} = 45$ °C</th>
<th>Ψ_{CA} (°C/W) at $T_{LA} = 60$ °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intel® 5100 MCH Chipset @ 25 W</td>
<td>2.4</td>
<td>1.8</td>
</tr>
</tbody>
</table>

5.0 Thermal Metrology

The system designer must make temperature measurements to accurately determine the thermal performance of the system. Intel has established guidelines for proper techniques to measure the MCH case temperatures. Section 5.1 provides guidelines on how to accurately measure the MCH case temperatures. Section 5.2 contains information on running an application program that will emulate anticipated maximum thermal design power (Figure 6).

5.1 MCH Case Measurement

The Intel® 5100 MCH Chipset cooling performance is determined by measuring the case temperature using a thermocouple. For case temperature measurements, the attached method outlined in this section is recommended for mounting a thermocouple.

Special care is required when measuring the case temperature (T_C) to ensure an accurate temperature measurement. Thermocouples are often used to measure T_C. When measuring the temperature of a surface that is at a different temperature from the surrounding local ambient air, errors may be introduced in the measurements. The measurement errors can be caused by poor thermal contact between the thermocouple junction and the surface of the integrated heat spreader, heat loss by radiation, convection, by conduction through thermocouple leads, or by contact between the thermocouple cement and the heatsink base. To minimize these measurement errors, the approach outlined in the next section is recommended.

Note: The thermocouple attach example shown below is on a different package, but the method and groove dimensions are the same. The thermocouple bead needs to be centered on the IHS.

5.1.1 Supporting Test Equipment

To apply the reference thermocouple attach procedure, it is recommended that you use the equipment (or equivalent) given in Table 5.
Table 5. Thermocouple Attach Support Equipment

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measurement and Output</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Microscope</td>
<td>Olympus® light microscope or equivalent</td>
<td>SZ-40</td>
</tr>
<tr>
<td>Digital multi-meter</td>
<td>Digital multi-meter for resistance measurement</td>
<td>Not Available</td>
</tr>
<tr>
<td>Test Fixture(s)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micromanipulator¹</td>
<td>Micromanipulator set from YOU Ltd. or equivalent mechanical 3D arm with needle (not included) to maintain TC bead location during the attach process</td>
<td>YOU-3</td>
</tr>
<tr>
<td>Miscellaneous Hardware</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Locite® 498* Super Bonder® Instant</td>
<td>Super glue with thermal characteristics</td>
<td>49850</td>
</tr>
<tr>
<td>Adhesive accelerator</td>
<td>Locite 7452 Tak Pak® accelerator for fast glue curing</td>
<td>18490</td>
</tr>
<tr>
<td>Kapton tape</td>
<td>For holding thermocouple in place or equivalent</td>
<td>Not Available</td>
</tr>
<tr>
<td>Thermocouple</td>
<td>OMEGA®, 36 gauge, “T” type</td>
<td>5SRTC-TF-36-72</td>
</tr>
<tr>
<td>Calibration and Control</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ice point* Cell</td>
<td>OMEGA, stable 0 °C temperature source for calibration and offset</td>
<td>TRCIII</td>
</tr>
<tr>
<td>hot point* Cell</td>
<td>OMEGA, temperature source to control and understand meter slope gain</td>
<td>CL950-A-110</td>
</tr>
</tbody>
</table>

Notes:
1. Three axes set consists of (1 ea. U-31CF), (1 ea. UX-6-6), (1 ea. USM6) and (1 ea. UPN-1). More information is available at http://www.narishige.co.jp/you/english/products/set/index.htm.

5.1.2 Thermal Calibration and Controls

It is recommended that full and routine calibration of temperature measurement equipment be performed before attempting to perform a temperature case measurement of the Intel® 5100 MCH Chipset. Intel recommends checking the meter probe set against known standards. This should be done at 0 °C (using an ice bath or other stable temperature source) and at an elevated temperature, around 80 °C (using an appropriate temperature source).

Wire gauge and length also should be considered because some less expensive measurement systems are heavily impacted by impedance. There are numerous resources available throughout the industry to assist with implementation of proper controls for thermal measurements.

Note:
It is recommended to follow company standard procedures and wear safety items like glasses for cutting the IHS and gloves for chemical handling.

Note:
Ask your Intel field sales representative if you need assistance to groove and/or install a thermocouple according to the reference process.

5.1.3 IHS Groove

Cut a groove in the package IHS according to the drawing given in Figure 6.

Note:
The center of the round at the end of the IHS groove should be at the center of the package.
Figure 6. IHS Groove Dimensions

SECTION A-A
SCALE 6

DETAiL B
SCALE 26.000

DETAiL A
SCALE 26.000

PACKAGE CENTER

PACKAGE CENTER

NOTE: UNLESS OTHERWISE SPECIFIED
1. NORMAL AND LATERAL LOADS ON THE IHS MUST BE MINIMIZED
 DURING MACHINING OPERATION
2. MACHINE WITH CLEAN DRY AIR ONLY. NO FLUIDS OR OILS
3. ALL MACHINED SURFACES TO BE #32 MILL FINISH OR BETTER
4. IHS MATERIAL IS NICKEL PLATED COPPER
5. CUT DIRECTION IS AS SHOWN
6. ALL MACHINED EDGES TO BE FREE FROM BURRS
7. SET DEPTH AT PACKAGE CENTER

0.035 (+0.000, -0.023)

0.035 (+0.000, -0.023)

0.010 (+0.000, -0.023)

0.010 (+0.000, -0.023)
5.1.4 Thermocouple Conditioning and Preparation

1. Use a calibrated thermocouple as specified in Table 5.
2. Measure the thermocouple resistance by holding both wires on one probe and the tip of the thermocouple to the other probe of the DMM (compare to thermocouple resistance specifications).
3. Straighten the wire for about 38 mm (1½") from the bead to place it inside the channel.
4. Bend the tip of the thermocouple to approximately a 45 degree angle by 0.8 mm (0.030") from the tip (Figure 8).

5.1.5 Thermocouple Attachment to IHS

Caution: To avoid impact on the thermocouple during the SMT process, reflow must be performed before attaching the thermocouple to the grooved MCH IHS.
1. Clean the thermocouple wire groove with isopropyl alcohol (IPA) and a lint-free cloth removing all residue prior to thermocouple attachment.
2. Place the thermocouple wire inside the groove letting the exposed wire and bead extend about 3.2 mm (0.125") past the end of the groove. Secure it with Kapton tape (Figure 9).

3. Lift the wire at the middle of groove with tweezers and bend the front of the wire to place the thermocouple in the channel ensuring that the tip is in contact with the end of the channel grooved in the IHS (Figure 10 A and B).

4. Place the MCH under the microscope unit (similar to the one used in Figure 13) to continue with the process. It is also recommended to use a fixture to help hold the unit in place for the rest of the attach process.

5. Press the wire down about 6 mm (0.125") from the thermocouple bead using the tweezers. Look in the microscope to perform this task. Place a piece of Kapton tape to hold the wire inside the groove (Figure 12). Refer to Figure 11 for detailed bead placement.

6. Using the micromanipulator, place the needle near the end of groove on top of the thermocouple. Using the X, Y, and Z axes on the arm, place the tip of the needle on top of the thermocouple bead. Press down until the bead is seated at the end of the groove on top of the step (see Figure 11 and Figure 12).

7. Measure resistance from thermocouple end wires (hold both wires to a DMM probe) to the IHS surface. This should be the same value as measured during the thermocouple conditioning. See Section 5.1.4, step 2., and Figure 13.

8. Place a small amount of Locite* 498* Super Bonder* adhesive in the groove where the bead is installed. Using a fine point device, spread the adhesive in the groove around the needle, the thermocouple bead, and the thermocouple wires already installed in the groove during step 5. Be careful not to move the thermocouple bead during this step (Figure 14).

Figure 9. Securing Thermocouple Wires with Kapton Tape Prior to Attach
Figure 10. Thermocouple Bead Placement

(A)

(B)

Figure 11. Positioning Bead on Groove

Diagram showing the positioning of a thermocouple bead on a groove.
Figure 12. Using 3D Micromanipulator to Secure Bead Location

Figure 13. Measuring Resistance between Thermocouple and IHS
5.1.6 Curing Process

1. Let the thermocouple attach sit in the open air for at least half an hour. Using any curing accelerator like the Locite* 7452 Tak Pak* accelerator for this step is not recommended. Rapid contraction of the adhesive during curing may weaken bead attach on the IHS.

2. Reconfirm electrical connectivity with the DMM before removing the micromanipulator. See Section 5.1.4, step 2., and Figure 13.

3. Remove the 3D arm needle by holding down the MCH unit and lifting the arm.

4. Remove the Kapton tape, and straighten the wire in the groove so that it is flat all the way to the end of the groove (Figure 15).

5. Using a blade, shave excess adhesive above the IHS surface (Figure 16).

 Note: Take usual precautions when using open blades.

6. Install new Kapton tape to hold the thermocouple wire down, and fill the rest of the groove with adhesive (Figure 17). Make sure the wire and insulation is entirely within the groove and below the IHS surface.

7. Curing time for the rest of the adhesive in the groove can be reduced using the Locite* 7452 Tak Pak* accelerator.

8. Repeat step 5. to remove any access adhesive to ensure a flat IHS for proper mechanical contact to the heatsink surface.
5.1.7 Thermocouple Wire Management

Figure 15. Thermocouple Wire Management in Groove

Figure 16. Removing Excess Adhesive from IHS
5.2 Power Simulation Software

Power simulation software now exists for the Intel® 5100 MCH Chipset. The power simulation software is a utility designed to dissipate the thermal design power on a Intel® 5100 MCH Chipset when used in conjunction with the Dual-Core Intel® Xeon® processor 5X00 series. The combination of the above mentioned processor(s) and the higher bandwidth capability of the Intel® 5100 MCH Chipset enables higher levels of system performance. To assess the thermal performance of the MCH chipset thermal solution under “worst-case realistic application” conditions, Intel developed a software utility that operates the chipset at near worst-case thermal power dissipation.

The power simulation software developed should only be used to test thermal solutions at or near the thermal design power. Real world applications may exceed the thermal design power limit for transient time periods. For power supply current requirements under these transient conditions, please refer to each component’s datasheet for the ICC (Max Power Supply Current) specification. Contact your Intel field sales representative to order the power simulation software: Intel® 5100 Memory Controller Hub Chipset (embedded) – Maximum Power Application.

6.0 Reference Thermal Solution

Intel has developed two reference thermal solutions that meet the cooling needs of the Intel® 5100 MCH Chipset under the embedded operating environments and specifications defined in this document. This chapter describes the overall requirements for the torsional clip heatsink reference thermal solution including critical-to-function dimensions, operating environment, and validation criteria. Other chipset components may or may not need attached thermal solutions depending on your specific system local-ambient operating conditions. For information on the ICH9R, refer to the thermal specification in the Intel® I/O Controller Hub 9 (ICH9) Family Thermal and Mechanical Design Guidelines.
The Intel® 5100 MCH Chipset has a lower TDP than the Intel® 5000 Series Chipset and a similar package size. Due to this, any thermal solutions for the Intel® 5000 Series Chipset should be reusable for the Intel® 5100 MCH Chipset including the Intel reference solutions. The system designer still needs to verify that the entire thermal solution will meet the component temperature specifications and TDP in the intended system.

6.1 AdvancedTCA* Reference Heatsink

6.1.1 Thermal Performance

The AdvancedTCA* reference heatsink should be made from aluminum to achieve the necessary thermal performance. Depending on the boundary conditions, the reference heatsink can meet the thermal performance needed to cool the Intel® 5100 MCH Chipset in the AdvancedTCA* form factor. The heatsink performance versus airflow velocity is shown in Figure 18. The heatsink may be used in other form factors that can provide the required amount of airflow to meet the components thermal specifications.

Figure 18. Torsional Clip Heatsink Measured Thermal Performance versus Approach Velocity

6.1.2 Mechanical Design Envelope

While each design may have unique mechanical volume and height restrictions or implementation requirements, the height, width, and depth constraints typically placed on the Intel® 5100 MCH Chipset thermal solution are shown in Figure 19.
When using heatsinks that extend beyond the MCH chipset reference heatsink envelope shown in Figure 19, any motherboard components placed between the heatsink and motherboard cannot exceed 2 mm (0.07”) in height.

Figure 19. AdvancedTCA* Torsional Clip Heatsink Volumetric Envelope for MCH Heatsink

6.1.3 **Board-level Components Keepout Dimensions**

The location of hole patterns and keepout zones for the AdvancedTCA* reference thermal solution are shown in Figure 25. This reference thermal solution has the same hole patterns as that of the Intel® E7500 Series Chipset and Intel® 5000 Series Chipset.

6.1.4 **Torsional Clip Heatsink Thermal Solution Assembly**

The reference thermal solution for the MCH is a passive extruded heatsink with a thermal interface. It is attached using a clip with each end hooked through an anchor soldered to the board. Figure 20 shows the reference thermal solution assembly and associated components. The torsional clip and the clip retention anchor are the same as the ones used on the Intel® E7500 Series Chipset reference thermal solution.
Full mechanical drawings of the thermal solution assembly and the heatsink clip are provided in Appendix A. Appendix B contains vendor information for each thermal solution component.

6.1.5 Heatsink Orientation

Because this solution is based on a unidirectional heatsink, the mean airflow direction must be aligned with the direction of the heatsink fins.

Figure 20. Torsional Clip Heatsink Assembly

6.1.6 Extruded Heatsink Profiles

The reference thermal solution uses an extruded heatsink for cooling the MCH. Appendix B lists a supplier for this extruded heatsink. Other heatsinks with similar dimensions and increased thermal performance may be available. A full mechanical drawing of this heatsink is provided in Appendix A.

6.1.7 Mechanical Interface Material

There is no mechanical interface material associated with this reference solution.

6.1.8 Thermal Interface Material

A thermal interface material (TIM) provides improved conductivity between the IHS and heatsink. The reference thermal solution uses Honeywell* PCM45F, 0.25 mm (0.010") thick, 25 mm x 25 mm (0.984" x 0.984") squared.

Note: Unflowed or “dry” Honeywell* PCM45F has a material thickness of 0.010". The flowed or “wet” Honeywell* PCM45F has a material thickness of ~0.003" after it reaches its phase change temperature.
6.1.8.1 Effect of Pressure on TIM Performance

As mechanical pressure increases on the TIM, the thermal resistance of the TIM decreases. This phenomenon is due to the decrease of the bond line thickness (BLT). BLT is the final settled thickness of the thermal interface material after installation of heatsink. The effect of pressure on the thermal resistance of the Honeywell* PCM45F TIM is shown in Table 6.

Intel provides both End of Line and End of Life TIM thermal resistance values of Honeywell* PCM45F. End of Line and End of Life TIM thermal resistance values are obtained through measurement on a Test Vehicle similar to the Intel® 5000 Series Chipset’s physical attributes using an extruded aluminum heatsink. The End of Line value represents the TIM performance post heatsink assembly, while the End of Life value is the predicted TIM performance when the product and TIM reaches the end of its life. The heatsink clip provides enough pressure for the TIM to achieve an End of Line thermal resistance of 0.345 (°C × inches²)/W and End of Life thermal resistance of 0.459 (°C × inches²)/W.

Table 6. Honeywell* PCM45F TIM Performance as Function of Attach Pressure

<table>
<thead>
<tr>
<th>Pressure (psi)</th>
<th>Thermal Resistance (°C × inches²)/W</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>End of Line</td>
</tr>
<tr>
<td>2.18</td>
<td>0.319</td>
</tr>
<tr>
<td>4.35</td>
<td>0.345</td>
</tr>
</tbody>
</table>

6.1.9 Heatsink Clip

The reference solution uses a wire clip with hooked ends. The hooks attach to wire anchors to fasten the clip to the board. See Appendix A for a mechanical drawing of the clip.

6.1.10 Clip Retention Anchors

For Intel® 5100 MCH Chipset-based platforms that have very limited board space, a clip retention anchor has been developed to minimize the impact of clip retention on the board. It is based on a standard three-pin jumper and is soldered to the board like any common through-hole header. A new anchor design is available with 45 degree angle bent leads to increase the anchor attach reliability over time. See Appendix B for the part number and supplier information.

6.1.11 Reliability Guidelines

Each motherboard, heatsink, and attach combination may vary the mechanical loading of the component. Based on the end user environment, the user should define the appropriate reliability test criteria and carefully evaluate the completed assembly prior to use in high volume. Some general recommendations are shown in Table 7.
Intel® 5100 MCH Chipset

6.2 CompactPCI* Reference Heatsink

Intel has also developed a reference thermal solution compatible with the CompactPCI* form factor. The reference solution was developed assuming a maximum ambient temperature of 67 °C with a minimum volumetric airflow rate of 10 CFM through each slot. Assuming these boundary conditions are met, the reference thermal solution meets the thermal specifications for Intel® 5100 Memory Controller Hub Chipset.

6.2.1 Component Overview

The CompactPCI* reference heatsink is an extruded aluminum heatsink and does not share the same volumetric footprint as the AdvancedTCA* reference heatsink. Full mechanical drawings of the thermal solution assembly, full mechanical drawings, volumetric footprint, and the heatsink clip are provided in Appendix A. It uses the same spring clip retention and Honeywell* PCM45F Thermal Interface Material (TIM) as the AdvancedTCA* reference solution.

Figure 21 shows the isometric view of the CompactPCI* reference heatsink.

Figure 21. Isometric View of the CompactPCI* Reference Heatsink

Table 7. Reliability Guidelines

<table>
<thead>
<tr>
<th>Test</th>
<th>Requirement</th>
<th>Pass/Fail Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanical Shock</td>
<td>50 g, board level, 11 ms, three shocks/axis</td>
<td>Visual Check and Electrical Functional Test</td>
</tr>
<tr>
<td>Random Vibration</td>
<td>7.3 g, board level, 45 minutes/axis, 50 Hz to 2000 Hz</td>
<td>Visual Check and Electrical Functional Test</td>
</tr>
<tr>
<td>Temperature Life</td>
<td>85 °C, 2000 hours total, checkpoints at 168, 500, 1000, and 2000 hours</td>
<td>Visual Check</td>
</tr>
<tr>
<td>Thermal Cycling</td>
<td>-5 °C to +70 °C, 500 cycles</td>
<td>Visual Check</td>
</tr>
<tr>
<td>Humidity</td>
<td>85% relative humidity, 55 °C, 1000 hours</td>
<td>Visual Check</td>
</tr>
</tbody>
</table>

Notes:
1. It is recommended that the above tests be performed on a sample size of at least 12 assemblies from three lots of material.
2. Additional pass/fail criteria may be added at the discretion of the user.

Note: Refer to Appendix A for more detailed mechanical drawings of the heatsink.
6.2.2 Thermal Solution Performance Characteristics

Figure 22 shows the performance of the CompactPCI* reference heatsink. This figure shows the thermal performance of the heatsink versus the airflow approach velocity provided.

Figure 22. CompactPCI* Reference Heatsink Thermal Performance

7.0 Reliability Guidelines

Each motherboard, heatsink, and attach combination may vary the mechanical loading of the component. The user should carefully evaluate the reliability of the completed assembly prior to use in high volume. Some general recommendations are shown in Table 8.

Table 8. Reliability Requirements

<table>
<thead>
<tr>
<th>Test</th>
<th>Requirement</th>
<th>Pass/Fail Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanical Shock</td>
<td>50 g, board level, 11 ms, three shocks/axis</td>
<td>Visual Check and Electrical Functional Test</td>
</tr>
<tr>
<td>Random Vibration</td>
<td>7.3 g, board level, 45 minutes/axis, 50 Hz to 2000 Hz</td>
<td>Visual Check and Electrical Functional Test</td>
</tr>
<tr>
<td>Temperature Life</td>
<td>85 °C, 2000 hours total, checkpoints at 168, 500, 1000, and 2000 hours</td>
<td>Visual Check</td>
</tr>
<tr>
<td>Thermal Cycling</td>
<td>-5 °C to +70 °C, 500 cycles</td>
<td>Visual Check</td>
</tr>
<tr>
<td>Humidity</td>
<td>85% relative humidity, 55 °C, 1000 hours</td>
<td>Visual Check</td>
</tr>
</tbody>
</table>

Notes:
1. The above tests should be performed on a sample size of at least 12 assemblies from three lots of material.
2. Additional pass/fail criteria may be added at the discretion of the user.
Appendix A Mechanical Drawings

Table 9 lists the mechanical drawings included in this appendix.

<table>
<thead>
<tr>
<th>Drawing Description</th>
<th>Figure Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>AdvancedTCA* Heatsink Assembly</td>
<td>Figure 23</td>
</tr>
<tr>
<td>AdvancedTCA* Heatsink</td>
<td>Figure 24</td>
</tr>
<tr>
<td>AdvancedTCA* Component Keepout Zone</td>
<td>Figure 25</td>
</tr>
<tr>
<td>CompactPCI* Heatsink Assembly</td>
<td>Figure 26</td>
</tr>
<tr>
<td>CompactPCI* Heatsink</td>
<td>Figure 27</td>
</tr>
<tr>
<td>CompactPCI* Component Keepout Zone</td>
<td>Figure 28</td>
</tr>
<tr>
<td>Reference Heatsink Torsional Clip</td>
<td>Figure 29</td>
</tr>
<tr>
<td>TIM2</td>
<td>Figure 30</td>
</tr>
</tbody>
</table>
Figure 23. AdvancedTCA® Heatsink Assembly Drawing
Figure 24. AdvancedTCA* Heatsink Drawing

NOTES:
1) BASE AND FIN MATERIAL IS ALUMINUM WITH THERMAL CONDUCTIVITY EQUAL TO 200 W/M-K OR BETTER
2) REMOVE ALL BURRS AND SHARP EDGES
3) PRIMARY DIMENSIONS ARE IN MILLIMETERS, BRACKETED DIMENSIONS ARE IN INCHES
4) LOCAL FLATNESS SHALL BE 0.227 mm (0.009") OVER ENTIRE HEATSINK BASE
5) INTEL MUST APPROVE ALL CHANGES
Figure 25. AdvancedTCA® Component Keepout Zone
Figure 26. CompactPCI* Heatsink Assembly Drawing
Figure 27. CompactPCI® Heatsink Drawing
Figure 28. CompactPCI* Component Keepout Zone
Figure 29. Torsional Clip Heatsink Clip Drawing
Figure 30. TIM2 Drawing
Table 10. MCH Torsional Clip Heatsink Thermal Solution

<table>
<thead>
<tr>
<th>Part</th>
<th>Intel Part Number</th>
<th>Supplier (Part Number)</th>
<th>Contact Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>AdvancedTCA* reference heatsink</td>
<td>D96852-001</td>
<td>Cooler Master* (ECC-00527-01-GP)</td>
<td>Wendy Lin (USA) 510-770-8566 x211 wendy@coolermaster.com</td>
</tr>
<tr>
<td>CompactPCI* reference heatsink</td>
<td>E45550-001</td>
<td>Cooler Master* (ECB-00590-01-GP)</td>
<td>Scott Miller 509-252-2206 scott.miller4@honeywell.com Paula Knoll 858-279-2956 paula_knoll@honeywell.com</td>
</tr>
<tr>
<td>Thermal interface</td>
<td>C34795-001</td>
<td>Honeywell* (PCM45F)</td>
<td>Harry Lin (USA) 714-739-5797 hlinack@aol.com Monica Chih (Taiwan) 866-2-29952666, x1131 monica_chih@ccic.com.tw</td>
</tr>
<tr>
<td>Heatsink attach clip</td>
<td>D10234-001</td>
<td>CCI*/ACK</td>
<td>Bob Hall (USA) 503-693-3509, x235 bhall@foxconn.com</td>
</tr>
<tr>
<td>Solder-down anchor</td>
<td>A13494-005</td>
<td>Foxconn (HB96030-DW)</td>
<td>Julia Jiang (USA) 408-919-6178 juliaj@foxconn.com</td>
</tr>
</tbody>
</table>

Note: The enabled components may not be currently available from all suppliers. Contact the supplier directly to verify the time of component availability.